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Abstract

The primary goal is to upgrade an existing 200 MHz high-speed ADC
test facility to obtain 20 GHz test and measurement capability. The mod-
ification is required to keep abreast of developing technology in ADC de-
sign, and in particular to support an ongoing effort in the ARPA HBT/ADC
program to develop multi-GHz analog-to-digital converters. Also, innova-
tive test methodologies are being developed to characterize and diagnose
distortion mechanisms for state-of-the-art converters with sample rates
above 1 GHz.

An important accomplishment is the development of diagnostic test
procedures which may be used on fully packaged components. Normally
it is not practical to probe internal points in high-speed circuits — due
to loading and unloading transmission line effects — and so external diag-
nostic procedures are very desirable. Under this contract we have shown
how phase-plane error functions can be built and interpreted to estimate
specific ADC architecture effects. Additionally, this work has shown that
the same set of calibration data can be used to estimate different features
through the appropriate choices of basis functions related to specific ADC
architectures. Fast Orthogonal Search methods were developed to assist
in the selection of the most sensitive error basis functions.
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1 Statement of the Problem Studied

The primary goal is to upgrade an existing 200 MHz high-speed ADC test
facility to obtain 20 GHz test and measurement capability. The bulk of the
project cost is dedicated to equipment purchases to achieve this upgrade.
The modification is required to keep abreast of developing technology in
ADC design, and in particular to support an ongoing effort in the ARPA
HBT/ADC program to develop multi-GHz analog-to-digital converters.
In addition, this project extends the University of Maine’s involvement
in test support for the ARPA HBT/ADC program. Under this program,
innovative test methodologies were developed to characterize and diagnose
distortion mechanisms for state-of-the-art converters with sample rates

above 1 GHz.

2 Summary of Important Results

The following items summarize specific accomplishments of the research
effort. The primary accomplishments are the development of the high-
speed test capability and the development of diagnostic test procedures
which may be used on fully packaged components. Sophisticated test
control software has been developed to allow access to the test facility from
remote locations. Normally it is not practical to probe internal points in
high-speed circuits — due to loading and unloading transmission line effects
~ and so external diagnostic procedures are very desirable. Under this
contract we have shown how phase-plane error functions can be built and
interpreted to estimate specific ADC architecture effects. Additionally,
this work has shown that the same set of calibration data can be used
to estimate different features through the appropriate choices of basis
functions related to specific ADC architectures. Fast Orthogonal Search
methods were developed to assist in the selection of the most sensitive
error basis functions, and histogram test techniques have been developed
to improve the resolution of previous calibration schemes.
Important results of the research include the following items:

e The proposed modifications to the University of Maine test facility
were made. The following equipment was purchased and added to
the U-Maine high-speed ADC test facility:

HP83712A  Synthesized CW Generator (0.01-20 GHz)
HP83732A  Synthesized CW Generator (0.01-20 GHz)
HP70000 Spectrum Analyzer (100 Hz - 26.5 GHz)
Wil 37247A  Vector Network Analyzer (0.04-20 GHz)
HP16500B  Logic Analysis System (32 bits at 1 Gsps)

In addition, the University has supplied two DEC Alpha worksta-
tions which are used exclusively for test-facility support and GPIB
control of the testbed.

e Demonstrated that phase-plane error functions are valid for all ADCs
produced using the same design and IC masks. This was demon-
strated on commercial high-speed components for units produced
more than one year apart.




Published a time-domain diagnostic procedure for digital data ac-
quisition.

Developed techniques to interpret ADC error functions for the es-
timation of specific ADC architectural errors. Improved orthogo-
nal search techniques were developed to identify dominant sources
of error. Emphasis was placed on the Folding and Interpolating
ADC architectures being developed under the ARPA program. For
this architecture, diagnosable error mechanisms include: compara-
tor hysteresis, integral nonlinearities, state-dependent sample-time
jitter, and threshold-voltage reference resistor errors.

Developed and published error correction techniques for time-interleaving
sampling structures.

Developed and published methods of estimating random timing jitter
components through a statistical analysis of residual error.

Analyzed raw test data supplied by Lincoln Laboratory for both
TRW and Rockwell prototypes as well as probe data supplied by
Rockwell.

Developed and published custom networked software for control of
ADC test equipment.

Improved phase plane error description techniques using histograms.
The improvements allow differential ADC nonlinearities to be incor-
porated into the above techniques.

Developed error models for Sigma-Delta oversampled converters.
Identified test techniques to compensate for dominant distortions
sources.
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Abstract

This paper describes a new method for developing analog-to-digital
converter (ADC) error function models using modified sinewave histogram
methods. The error models may be used to digitally compensate for non-
linearities introduced by the converter. The histogram modification in-
volves sorting of converter output samples based upon an estimated asso-
ciated input derivative signal. This error model is based upon a previously
unpublished result which shows that sinewave histograms yield distinctly
different expected errors for each state based upon input signal slope as-
sociated with each output sample. This result thus provides a dynamic
dependence for expected errors measured by means of histogram methods.

Sorted sinewave histograms are used to estimate slope dependent ex-
pected errors at each ADC output state (code). The method provides
improved error representation by providing error basis functions for every
output code. Simulated results prove that this method removes all slope
dependent errors for complex ADC architectures while experimental re-
sults for an 8-bit 200 MSPS ADC yielded more than 10 dB improvement
in spurious-free-dynamic-range (SFDR) over the full Nyquist band. The
new method is thus shown to possess wideband dynamic error character.




1 Introduction

This paper presents a complete development for the representation of ADC
dynamic error as a function of output state (ADC output code) and input
signal slope, through the use of modified histograms!. Modeling ADC error as
a function of state and slope of the input signal is a concept that has been under
development for some time [2, 3, 4]. Previous calibration schemes [5, 4] used
smooth basis functions, over output state and input signal slope, to model ADC
error. The ADC is driven with a single tone sinusoid and an FFT spectrum is
obtained from sample sets acquired from the converter’s output. The harmonic
components of the spectrum that are above the noise floor are considered to be
ADC error and are used to calculate an ADC error model. The predicted error
from this model may be stored in a look-up table to be used for compensating
converter error.

A completely different method for estimating an ADC dynamic error func-
tion is the basis for this paper. The method is based upon ezpected error for
each state of the converter as a function of the slope of the input to the ADC.
Modified histogram techniques are used to obtain estimates of expected error
which in turn provide least square curve fits of error-versus-slope for each state.
It is known that ADCs contain discontinuous expected error from state-to-state
and these discontinuities can not be accurately described when error is aver-
aged over a range of states as in previous compensation methods [2, 3, 4]. The
procedure developed in this paper finds a smooth error function in slope for
each state. By increasing resolution in the state domain, discontinuities in error
are accurately modeled from state-to-state, thus providing improved ADC error
representation.

Section 2 describes and develops the ADC error model which is required
to implement the desired dynamic error characterization. Histograms, obtained
from ADC response to pure sinewaves, are used to estimate quantization thresh-
olds which in turn are used to estimate expected error for each ADC state. A
procedure is then developed that estimates error function basis coefficients for
each state. It is shown, in Section 3, that two unknown parameters exist for each
calibration signal, namely : the amplitude and DC offset of the input signal.
A constrained least-squares approach is used to estimate each input parame-
ter so that desired error function basis coefficients can be estimated. Section
4 concludes the paper by providing examples of the compensation of raw ADC
data using the error model developed. Effectiveness of the error model is first
evaluated through the use of a simulated ADC performance to show that the
proposed method compensates for all output code and input slope dependent
errors. The error compensation method is then applied to a real wideband 8-bit
flash ADC where it is found that dynamic performance is improved by as much
as 10 dB over the full Nyquist band of the ADC.

1The paper is a follow up to the paper presented at the International Conference in Ot-
tawa [1] and provides all details required to implement the algorithm.




2 ADC Error Modeling

In theory, analog-to-digital conversion transforms continuous time signals into
signals that exist on equally spaced time intervals at discrete output values.
When the conversion is ideal, the only error introduced by this process is quan-
tization error from the digitization of the analog signal. By using a dithered
input signal, quantization error is made to appear as additive noise, with a resul-
tant noise level that depends upon the resolution of the ADC [6]. However, most
conversion is not ideal and errors are introduced from ADC architectural non-
idealities and mismatched component values. This section develops a generic
state and slope dependent error model for non-ideal ADC performance. A stan-
dard static error function, obtained from a sinewave histogram, is modified by
sorting ADC sample sets into two halves corresponding to positive and negative
values of the input signal derivative (slope).

2.1 An ADC Transfer Function Model

ADC performance can be described in terms of the transfer function of output
code versus input voltage [7]. Each ADC output code, ¢, is associated with two
input quantization thresholds, ¢; and #;1;. These quantization thresholds de-
scribe the range of input voltage that yields the ith output code. By measuring
all output codes versus their input thresholds, the ADC transfer function is cre-
ated. For an ideal converter, the quantization thresholds are equally spaced, so
that the output code is proportional to the input voltage. Non-ideal quantizers
display a non-linear relationship between input voltage and output code as an
approximation to a straight line. A “Nominal Characteristic” is defined to be
a straight line to which a given quantizer approximates. This characteristic is
represented as a line with slope G and intercept z,.

Expected error, a common measure of ADC quality, is defined to be, at the
ith state, the average deviation of the actual transfer function from the nominal
characteristic. Fig. 1 shows the ADC error, e(z), as a function of input voltage,
z, and it is constructed by subtracting the nominal characteristic, G(z — z,),
from the actual transfer function and zooming in on the ith output state. The
average error for state i is referred to as ezpected error and is denoted by E;.
The expected error for state 7 is written in terms of quantization thresholds ¢;
by finding the midpoint of the error curve shown in Fig. 1.

ti +tip1

Ei=’l,—G( 2

—mo) 1=1,2,...,2" -2 (1)
G and z, are the gain and offset of the nominal characteristic, n is the number
of bits of the ADC, and ¢;, ;11 are quantization thresholds that bracket the
ith state. Equation (1) gives the expected error as a function of output code
in terms of the quantization thresholds ¢; and ¢;;. A method for estimating
quantization thresholds is now developed in order to use (1).
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Figure 1: Static error description




2.2 Histogram Methods

Histogram tests offer a way to estimate quantization thresholds which are nec-
essary in order to estimate the expected error of (1). Creating a histogram
over an output sample set involves counting how many times each output code
occurs. A relationship for state ¢ between the number of occurrences relative to
the total number of samples in the set and the quantization interval, ¢;4; — ¢;,
is established. For example, if a ramp input is applied to an ADC, and a large
number of samples is collected, then ideally a histogram should contain the same
number of occurrences in each state. When one state contains fewer occurrences
than the average, its quantization width is correspondingly smaller than the av-
erage width. The opposite is true when a state’s number of occurrences is larger
than the average. Accurate estimates of quantization thresholds are determined
whenever enough samples are obtained.

A formal procedure for estimating thresholds can be developed when the
input signal to the ADC is known. Let the values (voltages) of an input sinusoid
be denoted by the random variable X. Its probability distribution function is
shown in Fig. 2 for a case in which X is a random sample of a sinusoid with
amplitude A and DC offset c. Now let Y represent the random variable of a
non-ideal quantizer output. Y takes on integer values 0of 0,1,2,...,2"—1 and its
distribution function may be estimated from a histogram taken on an output
sample set. Given a set of N samples, the estimated distribution function is
given by Fy (i) = S;/N, where S; is the cumulative number of occurrences for
output codes 0 through 1.

The distribution functions of X and Y are related to the values of the quan-
tization thresholds, ¢;, as shown in (2).

Fx(t;)=P(X<t;)=P(Y <i-1)=Fy(i—-1) (2)

By combining the estimated distribution for Y and the known functional form
for Fx(z), (2) can be used to derive an estimate of ¢;: £; = Fyx'(S;—1/N). For
a sinusoidal signal, {; is obtained from (3).

Fx(t:) = % + i—arcsin (ti; c) = S;;l (3)

where i = 1,2,...,2" — 1. Solving (3) for #; gives (4) which is the same relation
given in the IEEE Waveform Recorder Standard, [7].

fi=—Acos(w—SL]\;—l)+c, i=1,2,...,2" -1 (4)

A description for the estimated expected error of a particular ADC output code
is obtained by combining (4) with (1) to obtain (5).

Ei=i+ %é (cos (7!'5:;\—],—1) + cos (w%)) —G(c—x,) (5)




Sz'_l/N ~ Fy(i — 1) = Fx(ti)

c+ A

A

ti = F)}l(Sz_l/N)

Figure 2: Distribution function for sinewave with amplitude A and offset ¢




where ¢ = 1,2,...,2" — 2. Equation (5) contains two unknown parameters,
po = G(c — zo) and p; = GA. The true amplitude, 4, and offset, ¢, of an
input sinusoid is difficult to control and know with sufficient accuracy. Both
the converter circuitry and the test setup introduce gain and offset errors to the
input signal of the ADC.

For a single test sinusoid, the parameters A and ¢ can be estimated from an
FFT of the sample set. Two common methods are used to obtain reasonable
values for the characteristic parameters of an ADC transfer function [7]. The
“independent-based” method chooses G and z, to minimize the sum-squared
expected error over all states. The “terminal-based” approach selects G and z,
s0 as to zero the integral error (peak of the quantizer error function) at t; and
ta=_1 to obtain (6).

2™ — 2
¢ = ton_1 —t1 (6)
To = tl -1 / G

G and z, are actually global parameters so that when dealing with several sets of
calibration data, neither method is consistent when used independently on each
sinusoid due to the fact that each sample set yields different values for G and z,.
How to deal with this problem is a prime difficulty with the formulation of the
proposed method. The development in Section 3 solves this problem through a
constrained least squares formulation.

However, an important characteristic of expected dynamic errors for an ADC
must be discussed first. For practical converters, the expected error for an ADC
depends on the dynamic behavior of the input signal. Fig. 3 shows estimated
expected errors for the full range of a Tektronix AD20 8-bit ADC for a single
sinusoidal input. The samples were divided into two sets based upon the po-
larity of the slope of the sampled signal. The sorting is achieved by obtaining
a slope estimate associated with each sample and separating the samples into
positive and negative slope sets. The terminal-based approach [7] is used to
estimate parameters, G and z,, and (5) is used to obtain expected errors for
each sample set. From Fig. 3 it is evident that estimated expected error fol-
lows a different pattern for the positive slope set than it does for the negative
slope set. Thus, the error model described by (5) is incomplete since it has no
associated input signal slope dependency. The following section deals with this
deficiency. Two additional features should be noted in connection with Fig. 3.
First, the curves are repeatable for a good ADC in both the regular smooth
pattern and the smaller irregular state-to-state errors. In addition, the regu-
lar pattern is frequency-dependent and thus cannot be removed with a static
calibration function of state only. The repeatable part of the irregular error
provides the basis for the state and slope dependent error function developed in
this paper.
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2.3 Error Model as a Function of State and Slope

As pointed out above, estimated expected error not only depends on the value
of the output state, ¢, but it also depends upon the slope of the input signal,
y. In this paper, ADC error is modeled by a separate error function, e;(y), for
each converter output code. This model is a departure from previous ADC error
models [8, 9] which employed smooth functions of both output code and input
slope. By using separate error functions for each output code, discontinuous
error functions reflecting differential state-to-state ADC errors are developed as
required for most ADC architectures. Consequently, to represent a desired error
function, each expected output error is written in (7) as a linear combination
of a set of basis functions.

M
&(y) =D cibi(y) ()
k=1

é:(y) is estimated expected error at state 7 evaluated at slope y, bg(y) is the k¢,
basis function evaluated at slope y, and a; i is the k¢, basis function coefficient
for state 7. Equation (7) yields an error function of slope for 2" — 2 states
since the expected error is only defined for each bounded quantization interval
of the converter. The data of Fig. 3 show that practical converters exhibit slope
dependent discontinuous error-versus-slope patterns between adjacent output
codes. Allowing separate error-versus-slope functions for every state increases
the effectiveness of these error models relative to previous methods. The next
section develops procedures required to estimate the combined parameters, pg
and p;, of (5) and the basis function coefficients, o x, of (7) for each state and
sample data set.
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3 Calibrating The ADC

Section 2 described an error model dependent on output code and input slope.
This section describes how to use measured data to estimate model parame-
ters. Data is collected from the ADC to accurately characterize the converter
according to the proposed error model. Sinusoids are the chosen input signals
since they provide dynamic behavior for use in the error model and are easily
generated with sufficient purity. Once data are collected, they must be manip-
ulated into a useful form for developing error basis function coefficients. The
remainder of this section addresses the steps of collecting raw ADC sample sets
and using the collected data to estimate ADC error as a function of state and
slope.

Calibration of an ADC involves the selection of model parameters, a;x in
(7), to predict its expected error. Sinewave histogram techniques are used to
accomplish this task. To accurately describe error, the ADC must be excited
over its full range of state and slope values. Error observed in response to
applied test signals determines appropriate coefficients for the basis functions
used in (7).

Each sinusoidal test signal generates an elliptical trajectory in state and slope
space. Varying the amplitude and frequency of a sinusoid changes the shape of
the ellipse. The amplitudes and frequencies of the sinusoids must be carefully
selected for accurate ADC characterization. Large frequencies create greater
ranges in slope values and large amplitudes excite more output codes. Choosing
various frequencies and amplitudes yields a series of trajectories as shown in
Fig. 4. The goal is to choose a series of sinusoids at varying amplitudes and
frequencies that fill the state and slope space (the domain of the error model)
while providing a sufficient number of intersections across each state so as to
reduce ambiguity in the least-square estimation of the basis function coefficients.
For example, in Fig. 4, states just less than 250 would have only 10 intersections
and could only only solve uniquely for 10 or fewer basis coefficients in that region
whereas states near 200 would have 30 intersections with trajectories and could
support the estimate of up to 30 parameters.

3.1 Calibration Overview

A large number of samples are collected for each sinusoidal input to the ADC.
Slope estimates are obtained from the samples and separate histograms are
constructed based upon positive and negative slopes to form estimates of the
expected error for the upper and lower half of each trajectory. In this paper,
16k samples are collected for each trajectory. This allows roughly 8% samples
in each of the positive and negative slope sets. There are 256 output codes on
an 8-bit ADC and so the 8k samples are spread over 256 bins when a fullscale
histogram is constructed. There must be enough occurences, S;, for each output
code in order to obtain an accurate estimate of the quantization thresholds, ;.

A single trajectory yields two histograms, one each for positive sloped and
negative sloped samples. Typically the slope is estimated by either using an
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FIR filter on the raw data or by jw-multiplication in the frequency domain of
the transformed sample set. Equation (4) gives an expression for estimating
thresholds based on the S; sums. However, the amplitude and offset, 4 and
c of the input sinusoid are usually unknown (and frequency dependent). Each
histogram yields the measured S; variables required in (5), however, the pa-
rameters, p1 = GA, po = G(c — z,), and a;, still need to be determined to
complete the solution of the problem.

In implementation, significant memory savings are realized by reducing data
prior to estimation of the basis coefficients. The goal is to construct a single
error value at each state 7 and slope y, for (7). For example, a single trajectory of
16k samples yields two sample sets (positive and negative slopes) of roughly 8%
samples per set which are used to construct two histograms of length 27, where
n is the number of converter bits. Then at every output code i, there exist two
slope estimates, y= and y—, one for the positive and one for the negative slope
half of each trajectory. The estimated slopes associated with each state ¢ are
averaged to yield slope estimates for each of the positive and negative slope sets.

A direct (but ineffective) way to estimate the gains and offset parameters is
to use an FFT of a sample set to obtain estimates for ¢ and A and then use a
terminal or independent-based method [7] to estimate G and z,. This proce-
dure could be used individually for each trajectory and the resulting estimated
parameters would then be used with histogram data to calculate expected er-
rors. Every ADC output state i, excited by a trajectory, has two slope and
expected error values associated with it. For state i, the basis functions of (7)
could then be used to “best-fit” a curve versus slope to the expected errors from
all trajectories. The result of this procedure gives a description of expected
error based on state and slope of the input. However, experiments have shown
that this method for finding ¢, 4, G, and z, individually for each trajectory
causes a severe degradation in error model accuracy. The degradation is due
to the fact that A and c represent the converter input amplitude and offset,
and a frequency-dependent bias is introduced by estimating these terms from
the converter output. A better approach must be used to estimate all unknown
parameters for each trajectory.

3.2 A Consistent Formulation of the Error Model Analysis

The following discussion provides a mathematical description on how to estimate
suitable basis function coefficients for the proposed error model.
Equation (5) is rewritten in parameterized form as follows.

E; = i-phi—po
po = Glc—1z,), m1=GA
h; = —[cos(nSi-1/N)+ cos(nS;/N)] /2 (8)

E; is the estimated expected error for output code ¢, pp and p; are unknowns,
and h; is a known measurement obtained from a histogram. The next section
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shows how to write the desired basis coefficients as a function of the parameters,
po and p;.

3.2.1 Casting the Basis Coefficients in Terms of py and p;

From Section 2 an error model as a function of output state and input slope
was developed in (7) as a dot product of basis functions with unknown basis
coefficients, a; ;. A vector form of this model is given by (9) where &; is an

M-element column vector of basis coefficients at the ith state and ET(y) is an
M-element row vector of basis functions evaluated at input slope, y.

éi(y) = b7 (y)é; 9)

Setting both histogram estimated errors of the jth trajectory at state i equal
to the modeled error of (7) provides a matrix relation as in (10).

it +3jth th +ith
[g’_]=z[}]“[i Zf—jth][Zth]z[bq‘gy—]th):!&i (10)

i i 1 y; )
The +jth and —jth superscripts indicate respectlvely the positive and negative
sloped portions of the jth trajectory. p{, and p{ are the unknown global
parameters associated with the jth trajectory. These parameters are the same
for both slope sets since the sets come from the same input. E} and E; are
the estimated expected errors based on positive and negative sloped sample
sets respectlvely The problem is to solve for the basis function coefﬁc1ents,
a,, ¢ =1,2,. — 2), and the unknown trajectory parameters p{, and

p{ which minimizes residual error in the approximation of (10). y;*"th and

v; TR are the average positive and negative slopes for output code ¢ of the jth
trajectory. hf’ th and h;? 't terms are constructed from the positive and negative
slope histograms respectively. The relationship described by (10) is expanded
over kr trajectories that drive the ADC creating the vector relationship given

in (11) for the ith output code.

F 17 -1 h;{—lst 0 0 0 0 T r p(l)“’t - B B’T(yz—lst)

1 L R 0 0 0 0 Pt BT (y 1)

1 0 0 1 hf 0 0 pgn BT (y;2nd)

if1]-10 0 1 pjPnd 0 0 Pl O B

1 0 0 0 .1 h+kT”’ pyTth BT (4 +heth

L1 Lo o o o .. 1 h"‘T”‘ 1L btk | | By —thh)
il — Hif ~ Bydi (11)

Equation (11) is the matrix form for the large matrix expression. Examination
of the matrix H; shows that each trajectory composes a 2 x 2 sub-matrix. Not
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all output codes are excited by a particular trajectory due to the amplitude of
the sinewave. If a trajectory does not excite state i then these equations are
not included in (11).

Applying a least-squares solution [10] to (11) yields the following solution
for the basis function coefficients.

&; ~ (BT B;)'BT (il - H;p) (12)

Equation (12) provides an expression for the desired basis function coefficients
for the error at output code i. Clearly the coefficients are a function of the
parameters, p, since everything else is known. Keep in mind there are 2™ — 2
of these equations but each equation has the same set of § parameters. The
importance of (12) is that, as soon as the 7 are known, it is possible to determine
basis coefficient estimates for the ADC error model.

3.2.2 Constrained Least-Squares Solution for the p Parameters

The final step in obtaining the estimated basis coefficients is to acquire an
estimate of pp and p; for all trajectories. A proposed procedure is as follows.
Arbitrarily choose one trajectory, e.g. the jth, to use as a reference and use

the independent-based method [7] (or any other method) to estimate py and p;.
The independent-based method finds a solution for the estimate of py and p;
that minimizes the sum-squared expected error of (1). Equation (13) is obtained
when the expected error terms are expanded over all output codes excited by
the j* trajectory.

s pith

E:u—HRe,-[ ch] (13)

n

where
- h;}-jth . . -
hl—jth
h;—jth

—jth
h2

[ W
B BN =t

Hpes = , and 7= (14)

e -
1 hith | 2" -2 ]

A least-squares minimization of ETE yields the independent-based estimates,
3" and pI*", for the reference trajectory.

~jth
[ B ] = (HE,  Hp.s) " HE, 7 (15)

The result in (15) provides an estimate of the unknown parameters for a sin-
gle reference trajectory and this estimate is used as a constraint to find the
remaining parameters.
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Ei for Error
a trajectory

Figure 5: Theoretical error-vs-slope for output code ¢

It should be mentioned that other choices exist for finding estimates for the
reference trajectory. One method is to just use ideal values for each parameter,
e.g., ﬁ{,"‘ is offset (usually equal to the number of states/2), and P is the
amplitude (in LSBs) of the test sinewave used for the jth trajectory. Another
method is to use FFT analysis to determine A and c for the jth trajectory and
then use the terminal based method to estimate G and z¢. 4, ¢, G, and z are
sufficient to estimate the desired reference parameters through the definitions
given in (8). Best success has been obtained using (15) when applied to a near
full scale trajectory at a test frequency near the Nyquist limit for the calibration
band of interest.

Fig. 5 illustrates an error versus slope behavior for a single output code i.
Each trajectory yields two points on the plot, one on the left (—y) and one on
the right (4+y) side of the graph. This example shows a total of four trajectories
intersecting at this state. The estimated basis coefficients determine the shape
of the smooth curve which is supposed to provide minimum squared error in
the residuals between the smooth curve and the data points over all states
of the ADC. The distance from each point to the curve represents residual
error from the error model for a given set of estimated basis coefficients. The
points, except for the two points that correspond to the fixed jth reference
trajectory, can be moved up or down vertically by varying p. The estimate of
7 is selected to minimize the sum-squared residual error in the estimate of E;
(the distances between the points and curves of Fig. 5) over all output codes.
The residual error estimate at the ith state, €;, is obtained by subtracting the
model representation, B;&@;, from the estimated error (11) for all trajectories.
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& = i—H;p—Ba;
(I-Pg,) (il - H;p)
B;(BTB;)'BT (16)

Il

where Ppg,

Ppg, is a projection matrix which has many useful properties, in particular,
PR, = Pp,. A constrained least-square estimate minimizes the sum-squared

residuals, €;, under an applied constraint that p{;th and p{th, of the reference
trajectory, remain fixed. The constrained objective function is described by £(p)
where the reference trajectory parameters are added as a constraint through the
following vector definitions.

2" —2

L@ = 3 &&a+XT[F- el
=1

where AT = [00...)‘{”‘)\;"*’1...00]

e = [00...%“@{""...00]

- j jith
T = [pé”p}“~~'17<’fhpit -~-p§T”‘p'f""”'] 1)

Substitution of €; into (17) and subsequent expansion yields (18) which shows
explicit dependence of £ upon the parameters, .

2" —2 2" -2
L@ = idT@A-Pg)l - 2 ilT(I-Pg)Hif
=1 =1
2m" -2 .
+ Y pTH{(I-Pg)H:p+ M [F - po|18)
i=1

Now setting d£/dp = 0 and rearranging terms yields (19), a set of constraint
equations for the parameters, p.

F .
(¢ @] .o | =d (19)
1R
2" -2
where C = Y H](I-Pg,)H;
i=1
. 2" -2
d = Y H{(I-Pg)l
i=1
r _[00 ... 10 ..
G "[00...01...
AT = [\ A
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C is a square 2k X 2kr matrix and d is a column vector of length 2ky. The
parameters 7 and Lagrange multipliers, A, may be found by augmenting the
constraint equations of (19) to obtain (20).

c ! G 7 d
- 1=1.. (20)
GT : N A %

Here, N is a 2x 2 zero matrix and c';;T = [ﬁéthﬁ{th] . Solving (20) yields estimates

for the desired parameters, 7, which can then be applied to (12) to obtain the
error basis coefficients.

3.3 Calibration Algorithm Summary

The previous discussions have presented all mathematical details for develop-
ing the error model (7) of this paper. This section summarizes procedures for
collecting calibration data and estimating basis function coefficients.

1. Drive the ADC with several sinewaves at different frequencies and ampli-
tudes and collect sample sets for each signal. Perform the following steps
for each sample set.

(a) Obtain an associated slope estimate for the samples and sort into
positive and negative slope sets.

(b) Construct histograms from each sorted set and find h;, from (8), for
each output code observed for each histogram.

(¢) Find the average slope for each observed output code for each slope
set.

(d) Evaluate 5T (y), of (9), at each average slope, y*** for both slope
sets.

2. At this point, the ADC has been driven by all trajectories. The steps used
to estimate the basis coefficients are as follows.

(2) Find C and d of (20) by using (11) and (16) for each output code.

(b) Select a jth reference trajectory, construct Hg.s of (13), and estimate
the constrained parameters, pi" and pi™*, as in (15).

(c) Obtain an estimate for the unknown 1")‘ parameters for all trajectories
(based on the jth trajectory) through the inverse of (20).

(d) Use f to estimate the basis function coefficients as found in (12).

The basis function coefficients thus obtained can now be used to estimate
ADC error at any state and input slope through the use of the dynamic er-
ror model (7).
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4 Results

A method for obtaining a description of error as a function of ADC state and
input slope for an ADC has been developed. Once the error model has been
determined, estimated error can be created for any desired output code ¢ and
input slope y and used to compensate output samples to accomplish dynamic
error correction. Compensating the output sample set of a calibrated ADC is
straightforward. A sample set is obtained from the ADC along with correspond-
ing slope estimates or measures. Take each element of the sample set, along with
its associated slope value, and evaluate (7) to find the estimated expected error.
Subtract this error from the current element and the result is a compensated
sample.

The following sections present results of this dynamic error compensation
procedure. Simulated and measured data are used to verify the effectiveness of
the proposed error estimation and calibration procedure. All experimental and
simulated results were obtained by calibrating the ADC with 50 trajectories con-
taining 10 frequencies at 5 amplitudes per frequency. The frequencies uniformly
spanned the first Nyquist band and the amplitudes were uniformly spaced from
50 to 95% of full scale loading. Estimated basis function coefficients, used to
obtain the following results, were obtained by means of the method developed
in Section 3.

Some comments are appropriate in regard to basis functions used to model
error. There are no generating equations, or constraints, or other criteria that
dictate the choice of the functions that should be used. Trial and error is one
method and occasionally ADC architectural considerations provide useful crite-
ria to assist in the choice of “natural” functions [4, 11]. For example: Folding
architectures can cause periodic state dependent errors; many high-speed ADCs
exhibit hysteresis; and wideband amplifiers used to drive comparator arrays in-
troduce amplitude compression; all of which can be used to help guide the choice
of basis functions to use for creating a meaningful error function. It should be
noted that, when working with polynomials, it is best to keep the variable range
between 1, hence, it is necessary to normalize slope values by an appropriate
factor. Due to the usually different nature of negative slope errors compared
to positive slope errors as pointed out in the discussion relating to Fig. 3, it is
best to use two sets of functions to model slope dependent error for each state.
One set is used for negative slope values and the other is used for positive slope
values, thus allowing a discontinuous behavior across zero slope.

The results presented in this paper are all based on the use of 8 equally
spaced Gaussian functions as described in Eq. (21). The spacing is determined
by the maximum slope range and is the same for all states. The standard
deviation, o, was chosen to be equal to the separation in the means, yg.

bk (y) = ezp(—((y — y&)/ok)?) (21)

These functions are well-behaved for this algorithm and they are flexible in their
inherent ability to represent a wide variety of functional behavior.
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Figure 6: Uncompensated and compensated magnitude spectra, simulated ADC

4.1 ADC Simulation Results

The first result uses a simulated ADC to test the inherent ability of the algorithm
to adequately estimate differential and high order errors. Figure 6 shows un-
compensated and compensated magnitude spectra for a simulated 8-bit 3 GSPS
folding ADC operated near Nyquist frequency with a nearly full scale test sig-
nal. The rather complex model contained only state and slope dependent errors
in all mechanisms used to model the folding and interpolation operations of the
ADC [11]. The estimated error function drives all harmonic distortion well into
the noise floor. The graph illustrates the potential effectiveness of this error
model and compensation technique. To date, no other dynamic compensation
technique has provided the ability to remove such high order harmonic distor-
tion from such a complex model. Tests at other frequencies and amplitudes
have shown that the method provides equally excellent improvement over the
entire Nyquist band.

The error associated with the uncompensated simulated result is strictly
dependent upon output code and input signal slope. Simulated results demon-
strate that this error model effectively removes all state and slope dependent
error from uncompensated, but repeatable, ADC spectra.
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Figure 7: Uncompensated and compensated magnitude spectra, experimental
results

4.2 Experimental ADC Results

Figure 7 shows uncompensated and compensated magnitude spectra for a real
8-bit flash ADC operated at 204.8 MSPS. The results are not as profound as
the simulated results. Real ADCs contain errors that can not be accurately
modeled as strictly a function of output code and signal slope but are functions
of different parameters. Fig. 8 shows a spurious free dynamic range (SFDR) re-
sult for both compensated and uncompensated data for the ADC. (The SFDR
measures the dB ratio between the fundamental signal magnitude and the mag-
nitude of the largest harmonic, or spurious signal, over the full Nyquist band.)
The curve shows excellent improvement in performance across the full Nyquist
band. To date this algorithm has provided superior results compared to methods
previously reported [8, 2].
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5 Discussion and Conclusions

This paper has presented complete details for implementing a state-slope de-
pendent error model to determine dominant output code and slope dependent
ADC error. A calibration method to obtain data that accurately describe an
ADC according to the dynamic error model was developed. The validity of the
error model was evaluated by means of error compensation on a simulated ADC
whose error contained complex functions of state and slope only and experimen-
tal results were also obtained for a wideband ADC.

The high resolution of the error model accurately represents discontinuous
expected error vs output code patterns as required by the example shown in
Fig. (3) which illustrates typical behavior for wideband devices. Estimates of
quantization thresholds were obtained using the sinewave histogram method
and the histogram data were used in solving for the basis function coefficients
at each output code. An important concept introduced in this paper is the use
of the sorted sinewave histogram. The expected error differences obtained by
this procedure dictate a necessity for defining slope dependent error models.

Once a dynamic error model was defined, a calibration method was developed
to extract error data from the ADC when excited over its full range of output
code and input slope. An array of sinusoidal signals with varying frequencies and
amplitudes was passed through the ADC and output sample sets were processed.
The amplitudes and frequencies were selected to fill the slope vs output code
space of the ADC. The transformation of calibration data to an estimate of
basis function coefficients was developed. By setting the dynamic error model
for state i equal to the expected error of that state, a least-squares solution for
the basis function coefficients as a function of the unknown parameters, p; = GA
and pp = G(c — o), was determined.

The simulated 8-bit ADC test contained complex state and slope dependent
error only. Results showed that this compensation method is highly effective for
removing all errors that depend on state and slope. The results demonstrated
by this method for real ADCs are not as profound as the results from simulating
ideal performance, but important broadband improvements have been obtained
which exceed previous compensation results for this type converter.

Previous experience has shown that it is difficult to model differential state-
to-state errors to preserve the low frequency end of the SFDR while the high
frequency end of the SFDR response is dependent upon hysteresis and the signal
slope estimation procedure. The method presented in this paper handles both
ends of the Nyquist band equally well due to the nature of the construction of
the error model and its determining algorithm.

Exact mechanisms that contribute to ADC error are not always known and
usually rely on more than just current state and slope. By studying resid-
ual errors which remain after this compensation, it will be possible, in future
work, to study other mechanisms in more detail to determine residual error de-
pendencies, e.g., effects from the previous state (track/hold) and bit dependent
feedback anomalies from pipelined digital outputs on the ADC substrate (digital
“kickback”).
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A Virtual Instrument Bus Using
Network Programming

D.J. Rawnsley, D.M. Hummels, B.E. Segee
University of Maine
Orono, Maine *

Abstract— This paper provides an overview of a vir-
tual instrument bus created at the University of Maine
Orono. Software to support automated tests has become
difficult to maintain as the number of test boards and test
instruments grows. A variety of test instruments such as
logic analyzers, signal generators, and data caches connect
and communicate to workstations using a General Purpose
Interface Bus (GPIB).

This paper describes two software packages. The first
is a “virtual instrument bus” that makes a large number
of GPIB buses on separate networked computers appear
to be on a single bus. The second is an object-oriented
instrument library. The Library is designed to support a
variety of instruments using a common framework in an
eastly maintained software package.

The virtual instrument library is developed using re-
mote procedure calls (RPC). All workstations supporting
an instrument bus run a background program called a Bus
Server that handles bus communications and provides an
interface to the computer network. The Bus Server can be
programmed to handle any kind of bus, not just the GPIB.

Communication to the various Bus Servers is handled
by the Virtual Bus Library. This interface makes the phys-
ical configuration of the instrument buses transparent to
the software developer. The library supports a small set
of routines modeled after the IEEE /88.2. It also pro-
vides searching functions for locating specific instruments
on the computer network, and maintains o list of all ma-
chines that have instrument buses connected to them.

The virtual bus software provides easy code reuse for
quick program generation used for automated testing, at
the same time making all instruments appear to be located
on one single bus. This software will greatly facilitate the
future development of complezx experiments requiring mul-
tiple bus instrument coordination.

This work has been supported in part by the ARPA HBT/ADC
program under a contract administered by the Office of Naval Re-
search Grant N000149311007 and the DEPSCoR program through
the Army Research Office Grant DAAH04-94-G-0387
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Figure 1: Ideal Lab Configuration

I. INTRODUCTION

This paper presents the development and implementation
of instrument control software for use in a networked com-
puter environment. The project was motivated by on-
going research in the Communication Laboratory at the
University of Maine. The Communications Lab, among
other things, analyzes Analog to Digital (A/D) converter
output to provide a means of compensation for the error
introduced by the device. Software to support automated
tests for data acquisition from A/D test boards has be-
come difficult to maintain as the number of test boards
and test instruments grows. A variety of test instruments
such as logic analyzers, signal generators, and data caches
connect and communicate to workstations using a General
Purpose Interface Bus (GPIB). Software to control test
instruments that are physically located on separate work-
stations within the lab as illustrated in Figure 1 are ex-
tremely time consuming or impossible to configure. Mov-
ing instruments from one workstation to another required
reconfiguring software and recompiling an extensive soft-
ware package.

The software maintenance and network support issues
encountered on the Communications Lab are typical of
those encountered when instruments are controlled over
a computer network. While users have become accus-
tomed to distributed network resources (shared file sys-
tems, transparent access to printers, etc) instrument con-




trol software has not supported the capabilities of most
networks. For a networked computing environment, in-
strument control software should support the following
features:

¢ Instruments should be portable to any machine on
the local network without recompiling test software.

o Test software should not be platform dependent.
Tests should operate correctly regardless of the plat-
form that the test is run from.

¢ Development of test software should not be platform
dependent. Once the network instrument control li-
braries are compiled for a particular architecture,
the test software should be supported for any ma-
chine using that architecture.

o The software interface should be consistent regard-
less of the physical instrument bus interface.

¢ A common software interface should be provided for
instruments with common functionality. For exam-
ple, all function generators should respond to a com-
mon set of amplitude/frequency configuration com-
mands.

II. EXISTING SOFTWARE

Existing software used in the Lab for data acquisition and
controlling instruments is written in the C programming
language. The physical addresses of the test instruments
and the names of the machine hosts that they are con-
nected to are hard-coded into the software. In order to
move instruments from one machine to another, or to
change its address, the existing software package has to
be recompiled for the changes to take effect.

To access instrument software for a specific instrum-
ent, the user has to be logged-on to the workstation to
which the instrument is physically connected. Automated
tests involving multiple instruments connected to different
physical buses cannot be supported. In order to incor-
porate an instrument on a different bus than the one the
test is running on, the cabling would have to be physically
changed to the new bus. The address of the instrument
would have to be set so that it did not conflict with any
other instrument on the new bus location, and the soft-
ware would have to be recompiled to reflect these changes.
Setting up for such changes is time consuming and prob-
lematic.

With the expansion of our facility to include new high
speed instruments for A/D testing, the current setup is
not an efficient use of equipment.

T {fnsrument Duabese)

Communications Lab

Figure 2: Virtual Bus Block Diagram.

ITI. THE APPROACH

Two software packages are described which together ad-
dress these issues. The first is a “virtual instrument bus”
which makes a large number of physical buses on a com-
puter network look like a single bus. The Virtual Instrum-
ent Library is designed to support the computer network
communications making the computer networking trans-
parent to program developers.

The second software package is an object-oriented in-
strument library which is specific to instruments within
the communications lab. The Communications Lab Li-
brary is designed to support a variety of instruments us-
ing a common framework in an easily maintained software
package. The communication between the libraries is il-
lustrated in Figure 2.

A. Virtual Instrument Library

The virtual instrument library is developed using remote
procedure calls (RPC). RPC is a mechanism for building a
distributed system of programs that handle all communi-
cations between the physical buses, the workstations, and
the network. All workstations supporting an instrument
bus run a background program that handles all bus com-
munications (like GPIB) and provides an interface to the
computer network. These programs are shown in Figure
2 as Bus Servers. The Bus Server can be programmed to
communicate with instruments using any kind of bus (not
just a GPIB).

Communication to the various Bus Servers is handled
by the Virtual Bus Library. This interface makes the phys-
ical configuration of the instrument buses transparent to
the data acquisition software developer. The library sup-
ports a small set of routines modeled after the IEEE 488.2
GPIB standard. It also provides searching functions for lo-
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Figure 3: Communications Lab Library Software Struc-
ture.

cating specific instruments on the computer network, and
maintains a list of all machines that have instrument buses
connected to them. This library handles all communica-
tions to the RPC Bus Servers, and is the interface to the
computer network for the Communications Lab library.

B. Commaunications Lab Library

The Communications Lab library is created using an
object-oriented architecture design. It is designed to rep-
resent the functionality of the test instruments and pro-
vide simplified software reuse and changeability in a mod-
ularized fashion. The structure of the library is illustrated
in Figure 3.

Object-oriented programming is a method of extending
abstract data types to allow for type/subtype relation-
ships among data types. In C++ this is accomplished
with inheritance. Instead of re-implementing shared char-
acteristics, an object can inherit the functionality of the
class it was derived from. The C++ class mechanism al-
lows programmers to define their own data type.

The Communications Lab library uses C++ inheri-
tance extensively. Each level in Figure 3 inherits the
functionality of the level above it. All test equip-
ment are bus instruments that have common Instrument
functions. A piece of test equipment, such as a
Function Generator, has its own common functions to
complement the common Instrument functions. For ex-
ample, every Function Generator supports a common
software interface for controlling the frequency or ampli-
tude of the generator. A specific generator is a Hewlett
Packard 83732a which has a variety of functions that are
provided which are specific to that model.

The Communications Lab library maintains a bus con-
figuration database shown in Figure 2 which is automati-
cally updated if a change to an instrument’s address or lo-
cation is detected. When one of these instruments, like an
HP83732a, is used in a program, the library first checks the
current location and address in the instrument database.

This is done to make sure the program is talking to the
correct instrument. If not, search functions of the Virtual
Bus library are run to locate the test instrument and up-
date the instrument database of the new test instrument
location and address.

The virtual bus software provides easy code reuse for
quick program generation used for automated testing, at
the same time making all instruments appear to be located
on one single bus. This software will greatly facilitate
the future development of complex experiments requiring
multiple bus instrument coordination.

IV. VIRTUAL BUS SOFTWARE ARCHITECTURE

This section gives a quick overview of the software archi-
tecture including the names and purposes of the major
executables and routines. Figure 4 shows the client-server
architecture used for the Virtual Bus Software.

A. Client Side

The Application Programs are the client side of the archi-
tecture. All Application programs use the two software li-
braries, the Communications Lab Library and the Virtual
Bus Library, to create client executables. The Commu-
nications Lab Library is an object-oriented library that
models types of instruments, and communicates with the
Instrument Database Server for up to date information
on instrument locations. The Virtual Bus Library is the
interface to the network communications. This interface
is used by the Communications Lab Library to provide
reusable objects for Application Programs.

A.1. Virtual Bus Interface

The interface for the virtual bus abstracts away the ideas
of network programming from the Communications Lab
Library and Application Programs. All interface functions
establish connections with the specified servers and handle
network communications. When completed, each routine
disconnects from the server. Each routine provides an
interface that makes it appear that the routine is running
locally. When in fact, it maybe executing on a different
workstation. The following is brief review of each interface
routine.

1. v_send(): Send commands or data to a specified
instrument.

2. v_receive(): Receive data from a specified instrum-
ent.

3. v_bustimeout(): Set the timeout value for the
physical bus. The timeout value is the approximate
minimum length of time that I/O functions can take
before a timeout occurs.




4. v findlisteners(): Poll the bus to find the number
of listeners.

There are two helper functions that are used by
v_findlisteners():

1. get_valid_addresses(): Build a list of addresses
for the v_findlisteners() function.

2. gethosts(): Get a list of host workstations and pos-
sible bus addresses from a configuration file.

B. Server Side

Two different types of servers are used for the virtual
bus: the Instrument Server and the Instrument Database
Server.

B.1. Instrument Server

The Instrument Server, also called the Bus Server, is
run as a background process which is configured by the
startgpibd executable. When this process is started dur-
ing workstation boot-up, it is replaced with the gpibd
executable. gpibd is the server that handles all client re-
quests to communicate with the instrument bus. When
a connection is made, a specific service is performed by
calling one of the following routines:

1. v_send_1(): Send commands or data to a specified
instrument physically connected to the same work-
station this procedure is executed on.

2. v_receive_1(): Receive data from a specified in-
strument physically connected to the same worksta-
tion this procedure is executed on.

3. v_bustimeout_1(): Sets the timeout value for the
local bus.

4. v_findlisteners_1(): Poll the local bus to find the
number of listeners.

Each one of these routines calls vender specific GPIB in-
terface software to communicate on the bus.

B.2. Instrument Database Server

The Instrument Database Server is run as a background
process which is configured by the startcommd executable.
When this process is started during workstation boot-up,
it is replaced with the commd executable. The commd server
handles all client requests for information about the loca-
tion of a specific instrument. This server provides two
database services:

1. locate_1(): Given an instrument identifier, return
the last known location of that instrument.

2. update_1(): Update the location of an instrument
in the database to the current location.

There maybe as many Instrument Servers as there are
workstations that have external buses, but only one In-
strument Database Server is needed to maintain instrum-
ent locations.

V. CONCLUSIONS

The Virtual Instrument Bus software has proven to be
an excellent software package for data acquisition across
a local network. The convenience of running and creat-
ing data acquisition software from any workstation on the
network makes development easy for the user. The ease
of moving instrument locations and changing instrum-
ent addresses for specific test setups without recompil-
ing software allows for easy configuration of automated
tests. Once an instrument has had its location or address
changed the software will update the database so that no
searching will take place the next time the software is run.
The Virtual Instrument Bus software is a powerful tool for
providing development of complex experiments requiring
multiple bus instrument coordination.
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Abstract— This paper explores a compensation tech-
nique for mismatched amplifier gain and capacitor values
in a three stage, third order noise shaping Sigma-Delta
analog-to-digital converter (ADC). The paper concentrates
on multistage noise shaping (MASH) architectures. Two
possible sources of distortion are examined and simulated.
Using these simulation results, the distortion is identified,
and a modified architecture is designed that attempts to
compensate for these distortion terms. Simulation results
show that the distortion caused by finite Op-amp amplifier
gains (all near 60 dB) may be reduced by over 13 dB over
the operating band of the converter by using the modified
architecture.

I. INTRODUCTION

The recent need for high resolution Analog-to-Digital Con-
verters (ADCs) has forced the communications industry to
research new radical designs to overcome the physical lim-
itations of classic flash and other Nyquist rate converters.
One of the new designs emerging as a candidate for low
frequency quantization, such as in digital audio or Inte-
grated Services Digital Network (ISDN) applications [1],
is the Sigma-Delta converter. The Sigma-Delta converter
utilizes oversampling and feedback loops to produce high
resolution output samples using multiple quantizers, each
with a low number of bits. This allows relaxed tolerances
for each individual quantizer, while still producing the de-
sired high resolution output samples.

This paper examines the third order noise shaping Sigma-
Delta modulator, and a simulation of this modulator is
given. Portions of this simulation are described in detail in
section [l. where two specific error mechanisms commonly
found in Sigma-Delta modulators are examined. Simula-
tion results lead to a method in which the architecture of
the modulator may be modified to compensate for distor-
tion produced by these error mechanisms. A least-squares

This work has been supported in part by the ARPA HBT/ADC
program under a contract administered by the Office of Naval Re-
search Grant N000149311007 and the DEPSCoR program through
the Army Research Office Grant DAAH04-94-G-0387

calibration procedure is then used to calibrate the required
filter coefficients for the simulated converter. These proce-
dures lead to significant reductions in the distortion levels
for sigma-delta converters which are limited by mismatches
in finite op-amp gains or capacitor values in switched ca-
pacitor implementations.

II. ERROR MODELING

This paper concentrates on multistage noise shaping
(MASH) architectures [1, 2]. Figure 1 shows a block dia-
gram of a 3-stage modulator. The modulator is comprised
of three first order Sigma-Delta loops assembled in a feed-
forward architecture. In this figure, the m-bit ADCs are
replaced by additive white noise source models. This sub-
stitution is accurate if the quantization noise from the ADC
is independent from the input signal and uncorrelated from
sample to sample [3]. Although this statement is not ac-
curate for quantizers with low numbers of bits, the model
does lead to useful design guidelines for Sigma-Delta con-
verters [3]. Exact analysis for low resolution quantizers is
difficult, and usually requires simulation.
By summing the three modulator outputs after they are
passed through their respective loop filters, the final mod-
ulator output can be written as

Yu(z) = 273X(2)... 1)
+272(1 = 27Y)Napci(2) ...
—2*2(1 - z_l)NADcl (2)...
+Z_1(1 — Z_l)zNADcz(z) -
—2_1(1 - z—l)zNApcz(z) e
+(1 - Z_I)SNADc;;(z) -
= 2_3X(Z) -+ (1 - Z_1)3NAD03(Z). (2)

The (1 — 2z71)3 term is a high-pass function, attenuating
the low frequency portion of the quantization noise. Since
the converter is also oversampled, the input signal is band-
limited to this low frequency range, and after passing this
output through several low-pass filters and decimators, the
result is a high resolution digital representation of the low
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frequency analog input signal. Note that the quantization
noise in the output samples is a function of the quantiza-
tion noise introduced in the third loop only, assuming that
the cancellation of terms seen in (2) is exact. For non-ideal
loop filters or mismatched first order loops, this cancella-
tion will not be exact, resulting in distortion in the final
modulator output. ‘

The effects of non-equal finite amplifier gains or capaci-
tor mismatches may be modeled by examining a switched
capacitor implementation of the discrete-time integrators
(shown as z71/(1 — z7!) blocks in Figure 1). Figure 2
shows a typical implementation. The discrete-time model

b Vo(t)

for the switched capacitor integrator may be shown to have
transfer function

AC -1
Vo(2) [m]z o)
Vi(z) ~ 1 _ [_AC.+0, -1
(=) 1 [A02+52+01]Z '

This equation allows a simulation to model switched ca-
pacitor discrete-time integrators, such as those found in
Sigma-Delta loops, given specific component values and
amplifier parameters. It should be noted that when C; =
Cs, and as the open loop amplifier gain approaches infinity,
this model approaches the ideal discrete-time model for an
integrator.

Simulating these parameters is accomplished by substitut-
ing finite amplifier open loop gain values or finite capaci-
tor values, or both, into the switched capacitor integrator
equation given in (3). Typical values for these parameters
are 10 pF for the capacitor values and 60 to 80 dB for
the open loop amplifier gains [1, 2, 4]. By examining (3),
one can see that the same results are obtained by either
equating the capacitor values and assigning a finite am-
plifier gain, or by allowing the amplifier gain to approach
infinity and assigning unequal capacitor values: a non-unity
scalar coefficient is present on each delay term. Although
this error mechanism does not result in a nonlinear func-
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Figure 3: Sample spectrum of a simulated 3-stage MASH
converter with finite amplifier gains.

tion, it does result in nonlinear distortion in the output
spectrum for each Sigma-Delta loop due to the nonlinear-
ity introduced by the quantizer when the quantizer is not
replaced by a uniform white noise source. The distortion
in each loop is removed from the output spectrum of mul-
tistage converters to some extent through the cancellation
of quantization noise, as seen in (1). However, some dis-
tortion remains, as seen in Fig. 3, where a sinusoid with
no harmonics is passed through the three stage, third order
noise shaping Sigma-Delta modulator simulation, with the
three amplifier open loop gains set to unequal, finite values
(A; = 1000 V/V, A = 1020 V/V, and A3 = 1015 V/V),
and with all equal capacitor values. This distortion is also
present when the amplifier gains are equal and very small,
which is attractive due to the reduction in power consump-
tion for a lower gain device. Use of low-gain amplifiers
could be made more practical by developing procedures to
remove the resulting distortion. The process of removing
this distortion is referred to as compensation.

III. ERROR COMPENSATION

Errors from capacitor mismatches or finite amplifier gains
has been shown to result in degradation in the performance
of the converter. By adjusting gains in the recombination
of the modulator stages, performance can be significantly
improved. One architecture that uses programmable fil-
ters is shown in Figure 4. Test points are included in the
modified architecture to allow the device to be calibrated.
In Figure 4, the nominal transfer functions of the recom-
bination filters from the first two sigma-delta modulators
of Figure 1 have been replaced with programmable filters.
Let the transfer functions of these filters be denoted G (z)

and Ga(z).

To solve for the filter coefficients using a least squares curve
fit approach, the ideal loop filter equation must be rewrit-
ten in terms of the nominal loop filter coefficients:

2G1(2) = (1+e) — ()27} 4)
and
2Go(2) = (1+€) — (L +e4)z™t = (e5)27 2. (5)

The third loop filter, G5(z), need not be rewritten since
the third loop filter coefficients do not contribute to output
distortion and therefore are not calculated. The Sigma-
Delta modulator output equation is now written

Yu(z) = 272 [(1 + €1)Yar1(2) — (€2)27Yann (z)]
+27 [(1+ €3)Yara(2) — (L4 €4) 27 W (2) - ..
— (e5)27 2 Yar2(2)] (6)

Using data collected from the first two loop outputs,
ym1(kTs) and yar2(kTs), and creating the output se-
quence as defined in (6) for the case¢; = 0,7 =1,2,...,5,
an output spectrum may observed that contains all the
distortion terms that are seen in the final converter out-
put spectrum when the nominal loop filter coefficients are
used. The distortion terms may be identified as intermod-
ulation distortion between the input signal frequency and
one-half the sampling frequency. To identify effective filter
coefficients, the power in the distortion terms is minimized
by adjusting € =[e; €2 €3 €4 €5]7. A least squares method
of curve fit is used to find the best set of coefficients that
minimize the total distortion power.

IV. RESULTS

Figures 3 and 5 illustrate the potential performance of the
error compensating architecture. The figures show output
spectra for the two architectures for a pure sinusoidal input
signal. In this case, the distortion introduced by the con-
verter is caused by finite Op-amp gains (all near 60 dB).
Use of compensating architecture resulted in a reduction
in distortion by over 13 dB within the 0 < f < 51.2 kHz
output band for this converter.

V. SUMMARY

This paper has presented a method in which a three stage,
third order noise shaping Sigma-Delta modulator architec-
ture can be modified to remove output distortion due to
mismatched capacitor or amplifier open loop gain values.
The modulator structure was first introduced, and a simu-
lation based on this architecture was given. Two dominant
error mechanisms in the switched capacitor integrators of
the modulator were explored, and were added to the simu-
lation module. After simulation results showed that these
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error mechanisms produced output distortion, the architec-
ture was again analyzed, resulting in modified loop filters
that matched the nonlinearities of the integrators. Loop fil-
ter coefficients were calculated without prior knowledge of
the error parameters, since such parameters are not known
after fabrication of the device. Simulation results have il-
lustrated the potential benefits of the procedure.
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Abstract— The need for high dynamic range analog to
digital converters (ADCs) is strong due to the growing
use of digital signal processing in communications appli-
cations. ADC performance has improved over the years
due to advances in both design concepts and semiconduc-
tor technologies. However most ADCs still still exhibit un-
desirable distortion in addition to quantization error, thus
limiting spurious free dynamic range, (SFDR), in digital
receiver applications. This paper describes a new method
for developing ADC error function models using standard
sinewave histogram methods. The method provides better
error representation by providing error basis functions for
every state. Results show this method is capable of remov-
ing all slope dependent errors in complex ADC error models
and application to a 200 MSPS ADC showed more than
10 dB improvement in SFDR over the full nyquist band for
the ADC.

I. INTRODUCTION

This paper describes a new compensation method for find-
ing ADC error functions. The method is based upon ex-
pected error for each state of the converter and the error
for each state is estimated as a function of the slope of the
input to the ADC. Sinewave histogram techniques are used
to obtain estimates of expected error and these estimates
are used as a basis to curve fit error-versus-slope for each
state. This paper also describes a calibration technique
that obtains an accurate model for the ADC. Some sim-
ulated and experimental results using this compensation
scheme are described.

II. ADC ERROR MODELING

ADC performance can be described by the transfer function
of output code versus input voltage [1]. Expected error is
a common ADC error parameter and for a given state, (ith
output code), it is defined as the average error at state <.

* This work has been supported in part by the ARPA HBT/ADC
program under a contract administered by the Office of Naval Re-
search Grant N000149311007 and the DEPSCoR program through
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Fig. 1 shows a non-ideal transfer function relating input
voltage to ADC output codes. G is the nominal gain of
the converter and the ¢;'s are quantization thresholds for
the ADC. Quantization thresholds determine input voltage
ranges that correspond to specific ADC output codes. Fig.
2 is constructed by subtracting the nominal characteristic,
G(z—z,), from the transfer function and zooming in on the
ith output state. This figure shows the error for state 7 and
the average error for this state is referred to as expected
error, E;. The expected error for state ¢ is described by

ti+1;
Ei:i—G(’—_‘_Z—H'—l—zo). i=1,2,...,2"=2. (1)




G and z, are the gain and offset, n is the number of bits,
and t;, t;41 are quantization thresholds that yield the ith
output state.

III. SINEWAVE HISTOGRAM METHODS

The sinewave histogram method [1] is used to estimate
quantization thresholds,t;, for the ADC driven by a single
sinusoidal input. Estimated thresholds are obtained from

(2).
t; = ~Acos (wsj\_rl) +ec.

i=1,2,...,2" - 1. (2)
t; is the transition threshold between states i — 1 and ¢, 4
and c are the amplitude and DC offset of the input sinusoid,
8;—1 is the number of times that the ADC output codes 0
to 7 — 1 occurred, and N is the number of samples in the
set. A description for the estimated expected error of a
particular ADC output code is obtained by combining (1)
with (2) which yields (3).

Bi—itCA (cos (w25t} + cos (wﬁ)) Gle—1y).

2

©)
Equation (3) contains two unknown parameters GA and
G(c — z,). The input-voltage-to-ADC-output-code trans-
fer function parameters, G and z,, for a single input sinu-
soid are not known exactly. The exact amplitude, A, and
DC offset, ¢, of the input sinusoid is also not known. In
addition, both the converter circuitry and the test setup
can introduce gain and offset error to the input signal of
the ADC. A number of techniques exist to assign values to
gain and offset errors [1]. The independent-based method
is used in this paper [1]. This method solves for the two
unknowns, GA and G(c — z,), that minimize the mean-
square expected error over all states.
An important characteristic of expected error for an ADC
must be discussed. It can be shown that the expected er-
ror for an ADC depends on the dynamic behavior of the
input signal. Fig. 3 shows estimated expected errors for
the full range of an 8-bit ADC for a single sinusoidal in-
put. The samples were divided into two sets based upon
the polarity of the slope of the sampled signal. The sorting
is achieved by obtaining a slope estimate associated with
each sample and separating the samples into positive and
negative sloped sample sets. Using the terminal-based ap-
proach [1] to estimate nominal characteristics, (3) is used
to obtain expected errors for each sample set. From Fig. 3
it is evident that estimated expected error follows a differ-
ent pattern for the increasing sample set than that of the
decreasing sample set.

IV. AN ADC ERROR MODEL

Dynamic performance is described as the behavior of the
ADC when time varying signals are present at the input
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Figure 3: Estimated Expected Error for Increasing and De-
creasing Samples

rather than static signals. Parameters used in this paper
to describe dynamic error characteristics are the slopes of
the input signal and the corresponding output code states.
This error is described by

M
eily) = 3 anibely). (4)
k=1

é;(y) is estimated expected error at state 7 evaluated at
slope y, bx(y) is the kyp, basis function evaluated at slope
y, and a4 ; is the kg, basis function coefficient for state
i. There are 2(# of ADC bits) gets of basis function coef-
ficients for all states that need to be represented. Equa-
tion (4) yields an error function of slope for every state of
the converter. Practical converters exhibit discontinuous
error-versus-slope patterns from state-to-state. Allowing
an error-versus-slope function for every state increases the
resolution of this compensation routine relative to previous
compensation methods [2].

A variety of basis functions can be used to describe the
dynamic error in (4) but there can be problems in the choice
of basis functions to use. The estimated error is usually on
the order of a few least significant bits (LSBs) and the
slope y is many degrees of magnitude larger. Usually a
scale factor is placed on the slope variable to achieve better
numeric stability in the estimation procedures for a; .

V. CALIBRATING THE ADC

Calibration of the ADC involves the selection of the model
parameters, a; k in (4), to predict expected errors for the
ADC. Sinewave histogram techniques are used to accom-
plish this task. To accurately describe error, the ADC must




Slope, y

1
State, i

Figure 4: Trajectory Plot using 5 Frequencies at 2 Ampli-
tudes per Frequency

be excited over its full range of state and slope values. Er-
ror observed in response to applied test signals determine
appropriate coefficients for the basis functions used in (4).

A. State and Slope Space

Each sinusoidal test signal generates an elliptical trajec-
tory in state and slope space and choosing various frequen-
cies and amplitudes yields a whole series of trajectories as
shown in Fig. 4. These sets are used to obtain a best fit
of (4) to (3). A large number of samples are collected for
each sinusoid input to the ADC. (Results shown here all
use 64k sample sets.) Slope estimates are obtained from
the samples and separate histograms are constructed based
upon positive and negative slopes to form estimates of the
expected error for the upper and lower half of each tra-
jectory. Each trajectory introduces two unknowns GA and
G(c — z,) as shown in (3).

B. Estimation of Basis Function Coefficients

The following outlines the procedure developed to achieve
the required optimal estimates for all a; . A complete
description of the required mathematics may be found in
[3]. A conventional way of estimating the unknowns in (3)
is to use the FFT of the samples to obtain estimates for ¢
and A and to use a terminal or independent-based method
[1] to estimate G and z,. This procedure could be used
individually for each trajectory and the resulting estimated
parameters could be used to calculate estimated expected
error from (3). Every ADC output state i excited by a
trajectory has two slope and error terms associated with it.
For state i the basis functions of (4) could then be used to
“best” fit a curve versus slope to the expected error of (3).
The result of this procedure gives a description of expected

error based on state and slope of the input. However,
experiments have shown that this method for finding ¢, A4,
G, and z, individually for each trajectory causes a severe
degradation in performance of the compensation scheme.
The degradation is due to the fact that G and z; are global
parameters of the ADC and need to be estimated over the
entire dynamic range of state and slope, rather than just
for a single trajectory. A different approach must be used
to estimate the unknown parameters.

The goal of this compensation scheme is to estimate ex-
pected error as a function of slope for each state of the
ADC. In order to calculate estimated expected error we
need to solve for GA and G(c—z,) in (3). This is accom-
plished by first finding GA and G(c — zo) for one arbitrar-
ily selected reference trajectory. This is implemented using
the independent-based method [1]. By setting (3) equal
to (4) for all states and finding a least square solution for
the basis coefficients (a's), an expression is obtained for
the basis coefficients for all states as a function of the GA
and G(c — z,) terms in (3) for all trajectories. A least
square solution is then obtained to minimize the model er-
ror over all values of GA and G(c—z,). The minimization
is performed under the constraint that the unknowns found
for the reference trajectory remain fixed. The result is an
expression which yields GA and G(c — z,) for all the tra-
jectories. Using these estimates, the a; & terms of (3) may
be obtained. These values, in turn are used to calculate
the error characteristic as a function of state and slope.

VI. COMPENSATING SAMPLES

A method for obtaining a description of error as a function
of input state and slope for a particular ADC has been de-
veloped. Compensating an output sample set of the ADC
is straightforward. Obtain a sample set from the ADC and
a slope estimate of the sample set. Take each element of
the sample set along with its associated slope value and
evaluate (4) to find the estimated expected error value.
Subtract this error from the current element of the sample
set. The result is a compensated sample set.

VII. RESULTS

Figure 5 shows uncompensated and compensated fre-
quency spectra for a simulated 8-bit folding ADC [4]. The
graphs illustrate the potential performance of this compen-
sation technique. No other dynamic compensation tech-
niques have provided the ability to remove high order har-
monic distortion from such a complex model. This method
clearly removes all distortion to the noise floor. Figure 6
shows a spurious free dynamic range (SFDR) result for
both compensated and uncompensated data for a real 8-
bit Flash ADC operated at 204.8 MSPS. The SFDR is a
dynamic range test that measures the difference (in dB)
between the fundamental and highest distortion compo-
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Figure 6: SFDR Plot, Experimental Results

nent over the full Nyquist band for a constant amplitude
sine wave inputs. The curve shows excellent improvement
in performance across the full Nyquist band. To date this
method has provided superior results compared to methods
previously reported [5, 2].

VIII. CONCLUSION

The error introduced by the simulated 8-bit folding ADC
used to obtain the results shown in Fig. 5 depended only
upon state and slope of the input signal. The results thus
show that this compensation method is highly effective for
removing all errors that depend on state and slope. The
results of running this method on real ADCs are not as
profound. However, broadband improvements have been
obtained. The exact mechanisms that create ADC error
are not always known and often rely on more than just
current state and slope. By studying residual errors which
remain after compensation, it will be possible to deduce
other variable dependencies for the remaining errors.
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Abstract— This paper provides an overview of a virtual
instrument bus created at the University of Maine Orono.
Software to support automated tests has become difficult
to maintain as the number of test boards and test in-
struments grows. A variety of test instruments such as
logic analyzers, signal generators, and data caches con-
nect and communicate to workstations using a General
Purpose Interface Bus (GPIB). This paper describes two
software packages. The first is a “virtual instrument bus”
that makes a large number of GPIB buses on separate net-
worked computers appear to be on a single bus. The second
is an object-oriented instrument library. The Library is de-
signed to support a variety of instruments using a common
framework in an easily maintained software package.

The virtual instrument library is developed using remote
procedure calls (RPC). All workstations supporting an in-
strument bus run a background program called a Bus
Server that handles bus communications and provides an
interface to the computer network. Communication to the
various Bus Servers is handled by the Virtual Bus Library.
This interface makes the physical configuration of the in-
strument buses transparent to the software developer. The
virtual bus software provides easy code reuse for quick pro-
gram generation used for automated testing, at the same
time making all instruments appear to be located on one
single bus.

I. INTRODUCTION

This paper presents the development and implementation
of instrument control software for use in a networked com-
puter environment. The project was motivated by ongoing
research in the Communication Laboratory at the Univer-
sity of Maine. The Communications Lab, among other
things, analyzes Analog to Digital (A/D) converter output
to provide a means of compensation for the error intro-
duced by the device. Software to support automated tests

This work has been supported in part by the ARPA HBT/ADC
program under a contract administered by the Office of Naval Re-
search Grant N000149311007 and the DEPSCoR program through
the Army Research Office Grant DAAH04-94-G-0387
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Figure 1: Ideal Lab Configuration

for data acquisition from A/D test boards has become dif-
ficult to maintain as the number of test boards and test
instruments grows. A variety of test instruments such as
logic analyzers, signal generators, and data caches connect
and communicate to workstations using a General Purpose
Interface Bus (GPIB). Software to control test instruments
that are physically located on separate workstations within
the lab as illustrated in Figure 1 are extremely time consum-
ing or impossible to configure. Moving instruments from
one workstation to another required reconfiguring software
and recompiling an extensive software package.

The software maintenance and network support issues en-
countered on the Communications Lab are typical of those
encountered when instruments are controlled over a com-
puter network. While users have become accustomed to
distributed network resources (shared file systems, trans-
parent access to printers, etc) instrument control software
has not supported the capabilities of most networks. For
a networked computing environment, instrument contro!
software should support the following features:

o Instruments should be portable to any machine on
the local network without recompiling test software.

o Test software should not be platform dependent.
Tests should operate correctly regardless of the plat-
form that the test is run from.

o Development of test software should not be platform




dependent. Once the network instrument control li-
braries are compiled for a particular architecture, the
test software should be supported for any machine
using that architecture.

o The software interface should be consistent regard-
less of the physical instrument bus interface.

e A common software interface should be provided for
instruments with common functionality. For exam-
ple, all function generators should respond to a com-
mon set of amplitude/frequency configuration com-
mands.

II. EXISTING SOFTWARE

Existing software used in the Lab for data acquisition and
controlling instruments is written in the C programming
language. The physical addresses of the test instruments
and the names of the machine hosts that they are con-
nected to are hard-coded into the software. In order to
move instruments from one machine to another, or to
change its address, the existing software package has to
be recompiled for the changes to take effect.

To access instrument software for a specific instrument,
the user has to be logged-on to the workstation to which
the instrument is physically connected. Automated tests
involving multiple instruments connected to different phys-
ical buses cannot be supported. In order to incorporate an
instrument on a different bus than the one the test is run-
ning on, the cabling would have to be physically changed
to the new bus. The address of the instrument would have
to be set so that it did not conflict with any other instrum-
ent on the new bus location, and the software would have
to be recompiled to reflect these changes. Setting up for
such changes is time consuming and problematic.

With the expansion of our facility to include new high speed
instruments for A/D testing, the current setup is not an
efficient use of equipment.

III. THE APPROACH

Two software packages are described which together ad-
dress these issues. The first is a “virtual instrument bus”
which makes a large number of physical buses on a com-
puter network look like a single bus. The Virtual Instrum-
ent Library is designed to support the computer network
communications making the computer networking trans-
parent to program developers.

The second software package is an object-oriented instrum-
ent library which is specific to instruments within the com-
munications lab. The Communications Lab Library is de-
signed to support a variety of instruments using a common
framework in an easily maintained software package. The
communication between the libraries is illustrated in Figure
2.

> o Do)

Communications Lab

A/"‘/‘ I Computer Network
Ethernet
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Bus % ... More Workstations..................
Server Server
GPIB GPIB

VME GPIB

Figure 2: Virtual Bus Block Diagram.

A. Virtual Instrument Library

The virtual instrument library is developed using remote
procedure calls (RPC). RPC is a mechanism for building a
distributed system of programs that handle all communi-
cations between the physical buses, the workstations, and
the network. All workstations supporting an instrument
bus run a background program that handles all bus com-
munications (like GPIB) and provides an interface to the
computer network. These programs are shown in Figure
2 as Bus Servers. The Bus Server can be programmed to
communicate with instruments using any kind of bus (not
just a GPIB).

Communication to the various Bus Servers is handled by
the Virtual Bus Library. This interface makes the phys-
ical configuration of the instrument buses transparent to
the data acquisition software developer. The library sup-
ports a small set of routines modeled after the IEEE 488.2
GPIB standard. It also provides searching functions for lo-
cating specific instruments on the computer network, and
maintains a list of all machines that have instrument buses
connected to them. This library handles all communica-
tions to the RPC Bus Servers, and is the interface to the
computer network for the Communications Lab library.

B. Communications Lab Library

The Communications Lab library is created using an object-
oriented architecture design. It is designed to represent the
functionality of the test instruments and provide simplified
software reuse and changeability in a modularized fashion.
The structure of the library is illustrated in Figure 3.

Object-oriented programming is a method of extending ab-
stract data types to allow for type/subtype relationships
among data types. In C++ this is accomplished with in-
heritance. Instead of re-implementing shared characteris-
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Figure 3: Communications Lab Library Software Structure.

tics, an object can inherit the functionality of the class it
was derived from. The C++ class mechanism allows pro-
grammers to define their own data type.

The Communications Lab library uses C++ inheritance ex-
tensively. Each level in Figure 3 inherits the functional-
ity of the level above it. All test equipment are bus in-
struments that have common Instrument functions. A
piece of test equipment, such as a Function Generator,
has its own common functions to complement the
common Instrument functions. For example, every
Function Generator supports a common software inter-
face for controlling the frequency or amplitude of the gen-
erator. A specific generator is a Hewlett Packard 83732a
which has a variety of functions that are provided which
are specific to that model.

The Communications Lab library maintains a bus configu-
ration database shown in Figure 2 which is automatically
updated if a change to an instrument’s address or loca-
tion is detected. When one of these instruments, like an
HP83732a, is used in a program, the library first checks the
current location and address in the instrument database.
This is done to make sure the program is talking to the
correct instrument. If not, search functions of the Virtual
Bus library are run to locate the test instrument and up-
date the instrument database of the new test instrument
location and address.

The virtual bus software provides easy code reuse for quick
program generation used for automated testing, at the
same time making all instruments appear to be located
on one single bus. This software will greatly facilitate the
future development of complex experiments requiring mul-
tiple bus instrument coordination.

IV. VIRTUAL BUS SOFTWARE ARCHITECTURE

This section gives a quick overview of the software archi-
tecture including the names and purposes of the major
executables and routines. Figure 4 shows the client-server
architecture used for the Virtual Bus Software.

A. (lient Side

The Application Programs are the client side of the ar-
chitecture. All Application programs use the two software
libraries, the Communications Lab Library and the Virtual
Bus Library, to create client executables. The Communica-
tions Lab Library is an object-oriented library that models
types of instruments, and communicates with the Instrum-
ent Database Server for up to date information on instrum-
ent locations. The Virtual Bus Library is the interface to
the network communications. This interface is used by the
Communications Lab Library to provide reusable objects
for Application Programs.

A.1. Virtual Bus Interface

The interface for the virtual bus abstracts away the ideas
of network programming from the Communications Lab
Library and Application Programs. All interface functions
establish connections with the specified servers and handle
network communications. When completed, each routine
disconnects from the server. Each routine provides an in-
terface that makes it appear that the routine is running
locally. When in fact, it maybe executing on a different
workstation. The following is brief review of each interface
routine.

1. v_send(): Send commands or data to a specified
instrument.

2. v_receive(): Receive data from a specified instrum-
ent.

3. v_bustimeout(): Set the timeout value for the phys-
ical bus. The timeout value is the approximate min-
imum length of time that 1/O functions can take
before a timeout occurs.

4. v findlisteners(): Poll the bus to find the number
of listeners.

There are two helper functions that are used by
v_findlisteners():

1. get_valid_addresses(): Build a list of addresses for
the v_findlisteners() function.

2. gethosts(): Get a list of host workstations and pos-
sible bus addresses from a configuration file.
B. Server Side

Two different types of servers are used for the virtual bus:
the Instrument Server and the Instrument Database Server.

B.1. Instrument Server

The Instrument Server, also called the Bus Server, is
run as a background process which is configured by the




startgpibd executable. When this process is started dur-
ing workstation boot-up, it is replaced with the gpibd exe-
cutable. gpibd is the server that handles all client requests
to communicate with the instrument bus. When a connec-
tion is made, a specific service is performed by calling one
of the following routines:

1. v_send_1(): Send commands or data to a specified
instrument physically connected to the same work-
station this procedure is executed on.

2. v_receive_1(): Receive data from a specified in-
strument physically connected to the same worksta-
tion this procedure is executed on.

3. v.bustimeout_1(): Sets the timeout value for the
local bus.

4. v findlisteners_1(): Poll the local bus to find the
number of listeners.

Each one of these routines calls vender specific GPIB in-
terface software to communicate on the bus.

B.2. Instrument Database Server

The Instrument Database Server is run as a background
process which is configured by the startcommd executable.
When this process is started during workstation boot-up, it
is replaced with the commd executable. The commd server
handles all client requests for information about the lo-
cation of a specific instrument. This server provides two
database services:

1. locate_1(): Given an instrument identifier, return
the last known location of that instrument.

2. update_1(): Update the location of an instrument
in the database to the current location.

There maybe as many Instrument Servers as there are
workstations that have external buses, but only one In-
strument Database Server is needed to maintain instrum-
ent locations.

V. CONCLUSIONS

The Virtual Instrument Bus software has proven to be an
excellent software package for data acquisition across a
local network. The convenience of running and creating
data acquisition software from any workstation on the net-
work makes development easy for the user. The ease of
moving instrument locations and changing instrument ad-
dresses for specific test setups without recompiling software
allows for easy configuration of automated tests. Once an
instrument has had its location or address changed the
software will update the database so that no searching will
take place the next time the software is run. The Virtual
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Instrument Bus software is a powerful tool for providing de-
velopment of complex experiments requiring multiple bus
instrument coordination.




The Modulo Time Plot - A Useful Data
Acquisition
Diagnostic Tool

Fred H Irons, and Donald M Hummels

Abstract—This paper illustrates the use of the Modulo Time Plot
to facilitate diagnosis of data acquisition systems and components.
While conventional techniques, involving spectral analysis and his-
tograms, provide certain useful and necessary measures of perfor-
mance, the use of reordered sample sets has gained considerable
popularity in recent work aimed at characterizing analog-to-digital
converter error mechanisms. Examples show that the Modulo Time
Plot is useful for quick visual inspection of system performance in-
cluding dynamic range, distortion and error plots, the detection of
random bit errors, and timing errors between the test signal and the
sample clock.

I. INTRODUCTION

It has been understood for several years that dynamic
testing of analog-to-digital converters (ADCs) and wave-
form recorders is necessary to fully understand their per-
formance and useful operating parameters [1], {2], [3],
[4]. The popular dynamic test signal is the sinewave
because it is easy to generate in near ideal form, i.e.,
with negligible distortion and highly accurate and sta-
ble frequency. Normally, when Ng samples are collected
and stored in a buffer memory at a sample rate, Fg, the
sinewave test frequency is set on one of the basis frequen-
cies, or bins, of the FFT associated with the sample set.
This frequency choice eliminates spreading of signal en-
ergy across the FFT spectrum that would otherwise occur.
The test frequency is also usually chosen to be in the first
Nyquist band, i.e., less than Fs/2, for most applications;
however, increased use of IF detection architectures has
pushed testing into second and higher Nyquist bands in
many cases.

Whenever a test frequency is not sufficiently less than
Fg/2, the harmonic distortion, due to the quantizer re-
sponse to the applied signal, will be aliased across the
FFT spectrum. A typical situation is depicted in Figures 1
and 2 for an 8-bit ADC. All the examples presented in this
paper will have the following common test parameters,
namely: Ng = 4096, the clock frequency, Fs = 204.8
MSPS, and the test frequency, Fr = 75.05 MHz. Fig-
ure 1 shows acquired sample values versus sample time
in usec, and Fig. 2 shows the FFT magnitude spectrum
versus FFT bin number. Each of the first 50 harmonics

This work has been supported in part by the ARPA HBT/ADC pro-
gram under a contract administered by the Office of Naval Research
Grant N000149311007 and the DEPSCoR program through the Army
Research Office Grant DAAH04-94-G-0387
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Fig. 1. Sequential time plot of sine wave samples.
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Fig. 2. FFT spectrum for sample of Fig.1.

is labelled if it exceeds a threshold of -75 dB with re-
spect to a full-scale sinewave amplitude. The labeling is
(+) for the positive-frequency Euler component and (-)
for the conjugate-frequency component. Clearly there are
several distortion terms in excess of the noise floor, and
clearly the harmonics are distributed across the spectrum
by the aliasing process.

As a diagnostic tool, the plot shown in Fig. 1 is not very
helpful. It does indicate the maximum and minimum sam-
ple values, but aliasing hides the fact that the sampled sig-
nal is a sinusoid. The plot provides even less detail when
the sample values are connected with straight lines be-




tween each data point as the graph would turn into a solid
black bar between the extrema of the set. Consequently,
plots of raw samples have not been used for significant
diagnostic purposes in the past, other than to construct
histograms to observe whether there are any missing or
preferred states. This paper shows how a simple reorder-
ing of the sample set can be made to yield visually useful
information for diagnostic purposes through the use of the
Modulo Time Plot.

II. THE MopuLO TIME PLOT

The samples shown in Fig. 1 can be rearranged through
a straightforward modulo operation which will be devel-
oped in this section. The rearrangement usually provides
a clearer picture of both the waveform properties and the
performance of the sampling device for any periodic test
signal.

Let t; represent the time dependence of the kth sam-
ple in the collection of Ng samples at a constant sample
frequency, Fis. Then Eqn. 1 represents the set of discrete
sample time values based upon the sample number, k, for
a set of Ng samples, z(kTs)

ty, =k/Fs fork=0,1,....,Ns—1. (1)
Equation 1 was used to plot the time axis for the set of
sample values shown in Fig. 1. Now consider that when
the test frequency is set at some fraction of the sample
frequency, the samples are taken at different points in suc-
cessive periods of the test signal. Let the signal test fre-
quency, Frr, be set on the mth bin of the FFT basis fre-
quency set for the samples as given in Eqn. 2. The number
of samples, Ng, is normally a power of 2 for efficient FFT
implementation. The m is generally selected to be an odd
number for this case

Fr= mfi for m odd.

Ne €)]

The period of the test signal is then given by

1 Ng
T=—- = ——.
Fr mFg

©)

When the sample time, #, is represented modulo the sig-
nal period, T', then the samples may be reordered to dis-
play their position within a single period of the test signal.
The reordering for plot purposes may be accomplished as
follows. Define 7, as the modulo T values of ¢

tx =ty mod T. 4)

A plot of z(kTs) versus £ will be referred to as the
Modulo Time Plot. It is possible to show that if Ng is a
power of 2, and m is odd, i.e., m and Ng are relatively
prime, then the values of #; are uniformly spaced over
one full period of the test signal. Selecting m and Ng

8-BIT SAMPLES (LSB)

o 2 7 s 8 10 12
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. Fig. 3. Modulo time plot for samples of Fig.1.

relatively prime may also reduce the experimental uncer-
tainty, as suggested in [5] for the diagnosis of ADC in-
tegral and differential nonlinearities. In this case, how-
ever, reordering is the issue so that the modulo time plot
may also be created by reordering the samples, z(kTs),
to relate index numbers of the original set to indices of a
reordered set

kr = mk mod Ng = mFgst; mod mFsT .

&)

The kg gives the index of the kth sample, £(kTs), in the
reordered set. The reordered set variables are then given
by

.'L‘R(kR) = z(k)_——. Z(kTs)
E_ k
th = Voo = ms (6)

Figure 3 shows the data of Fig. 1 plotted either as  versus
i or zp versus tg. The samples are plotted as points
and are not connected by lines. The reordered set, =g,
can have each value connected with lines; however, the
z and f; points should not be connected when they are
plotted. This figure clearly shows that the sampled signal
is a sinewave with the correct period and its peak-to-peak
operation.

While we have just derived the relationship for the re-
ordered sample set, it is instructive to note that the trans-
form of the reordered set has also reordered the harmon-
ics of the test signal in the following fashion. Equation 7
gives the DFT for the reordered sample set

Nsg-1
Z zR(e)e—j‘Zwln/Ns .

£=0

Xr(n) = Q)

When Ng and m are relatively prime, Eqn. 7 may be
rewritten in terms of a summation index, k, where k and
£ are related by

£ = mk mod Ng . (8)




Substitution of Eqn. 8 into Eqn. 7 yields the following
identity between the transforms for the sample sets

Ng—1
Xr(n)

k=0

Nsg—1
Z x(k)e—jZNmkn/Ns
k=0

X(nm) .

Xgr (n) =
The harmonics of the test signal are reordered sequen-
tially in the transform for the reordered sample set.

The next section presents several examples of how the
modulo time plots provide useful time-domain interpreta-
tions for sampled data sets.

III. MopuLO TIME PLOT EXAMPLES

The Modulo Time Plot is presented as a complimentary
tool to assist in the diagnosis of the behavior of a data
acquisition system. It is really only one more tool that
can be used to determine whether a system is working
correctly or not. Examples are given in this section to
illustrate the usefulness of this data presentation method.

A. Residual Error

Measured data for a sampled sinewave plus noise is
shown in Fig. 1. The noise is added to dither, or ran-
domize, what would otherwise be harmonically depen-
dent quantization error [6]. Because a sinewave signal
is used, it is possible to estimate both the fundamental
component and the average DC component present in the
signal. These may be obtained by either an FFT or by
methods described in IEEE Standard 1057 [4]. Let Ap
represent the DC estimate and A; Z¢; represent the esti-
mated magnitude and phase of the fundamental. A resid-
ual error can then be calculated using

E(k) = z(k) — Ag — Aicos(2nFrk/Fs + ¢1) . (10)

Figure 4 shows the error obtained for the sample set, z, as
it appears versus sample time, ¢. In this pattern everything
appears to be fine as the error looks uniform across +1
LSB, as it should for a dithered quantizer. There are a
few “outliers” that might be expected if the noise source
does not have a uniform distribution function.

In spite of this apparently good state of affairs, this
residual error actually has a strong correlation to the input
signal which is evident when viewed with a Modulo Time
Plot. Figure 5 shows the graph of Fig. 4 plotted versus
modulo time along with a superimposed and scaled ver-
sion of the fundamental component of the sample set, .
This plot shows amazing order in the residual error when
each point is referred to its correct timing within the test
signal period. The adjustment of dither is illustrated at

Z IER(mk mod Ns)e—j21r(mk mod Ns)n/Ns
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Fig. 4. Sequential time plot of residual error.
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Fig. 5. Modulo time plot of residual error.

the peaks of the sinusoid. Clearly the Modulo Time Plot
of Fig. 5 tells us a lot more about what is happening than
does the conventional plot of Fig. 4.

B. A Noisy Bit

When one works with high-speed data acquisition it is
necessary to electrically match data lines to avoid reflec-
tions on transmission lines. A mismatched line causes
logical threshold decision errors which in turn affect bit
error rates for the transmission of data across digital in-
terfaces. The example shown in this section illustrates the
detection of a single noisy bit through the use of the Mod-
ulo Time Plot.

Simulated data are obtained for this example by adding
random errors to the fourth least significant bit (23) of a
measured data set so as to simulate a noisy ECL thresh-
old on the data acquisition interface. This causes the bit
to have spurious high levels (1°s) due to random noise on
the data line exceeding some unknown threshold. The
contaminated data set is plotted versus time and shown
in Fig. 6. Generally, this looks like any other sinusoidal
sample set except for a few odd points at the positive peak
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Fig. 7. Modulo time plot of noisy bit samples.

of the data. Inspection of the FFT magnitude spectrum
would show a plot nearly identical to that shown in Fig. 2
except that the average value of the noise floor is ele-
vated a few dB. A noisy bit generally does not introduce
harmonic distortion; rather, it spreads energy uniformly
across the full Nyquist band. The histogram would look
very nearly the same as for the ideal sinusoid except there
would be a small set of occurrences at 8 LSBs above the
usual maximum. Generally the histogram shape is not
that helpful for diagnostic purposes.

When the data of Fig. 6 are plotted versus modulo time,
the graph shown in Fig. 7 is obtained. Here it is very clear
that there is a spurious effect occurring, and it is just a few
LSBs above the correct signal. To determine the actual
difference it is useful to obtain a residual estimate follow-
ing the procedure outlined in the previous example. The
result is shown in Fig. 8. The residual error shows normal
errors as expected over =1 LSB, and then spurious errors
are clustered around the 8 & 1 LSB ordinate of the plot.
Should there be other noisy bits (due to random effects),
there would be points clustered along other power-of-2
ordinates.

RESIDUAL ERROR (LSB)

- ' 4 6 5 m) 12
t Mod T (ns)

Fig. 8. Modulo time plot of residual error.

C. Intermittent Sample Clock

A final example is given for the case where the sample
clock is intermittent across the interface between the ADC
and the data acquisition system. This type of error could
also occur due to improper electrical matching of the line
driver for the clock to the data acquisition unit. Whenever
a data cache is instructed to collect Ng samples, that is
exactly what it does when it is working properly! How-
ever, it does not count any missed sample events caused
by data line mismatch or noise on the clock enable line.
The data presented here were simulated by deleting two
samples during the data acquisition cycle.

The sample set is plotted in Fig. 9 versus linear time
based upon the nominal sample interval for the experi-
ment. The data look perfectly normal for a sinewave plus
noise. However, inspection of the FFT magnitude spec-
trum would show what appears to be phase noise around
the fundamental frequencies of the sinewave. It might be
suspected that the test signal is not centered on an FFT ba-
sis frequency due to the apparent leakage across the spec-
trum. The FFT spectrum is not sufficient to tell what is
really wrong, and so one can try the Modulo Time Plot
as a last resort. The result is shown in Fig. 10. Here the
results are very informative. First, the graph tells us that
the test signal is set on the correct frequency because we
are getting one full-period sinewave response on this plot.
The fact that there are three full sinewaves says that the
data cache missed two blocks of time during the data ac-
quisition cycle. This example simulated the dropping of
only one clock period each time a sample was skipped.
The phase shift per clock period is given by the ratio of
the test frequency, Fr, to the sample frequency, Fs. For
this case we would have a shift of about 132° per clock
cycle which appears to be the case for the data shown in
Fig. 10. Again, only the data points are plotted, so the
density or thickness of each line gives an indication of
how long the time intervals were between clock skips in
the acquisition process. Once again, the Modulo Time
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Plot helps to figure out what is happening in the sampling
process when ordinary time and frequency plots fail to
provide a conclusive “picture” of the process.

IV. CONCLUSIONS

This paper has demonstrated the usefulness of the
Modulo Time Plot as a tool to assist in the diagnosis of
data acquisition systems. While modulo arithmetic is not
new, nevertheless, the method has not received any real
use or been documented for this type of application [4].
The procedure is quite often useful when ordinary time
plots are not informative due to aliasing as observed in
the time domain, or when spectral and histogram plots do
not provide conclusive evidence about what is happening
in a process. Three examples of applications have been
presented. The first example showed how a residual error
estimate had a strong correlation to the fundamental com-
ponent of the test signal. The second example showed
how a noisy bit could be observed from otherwise nearly
normal data. The final example illustrated the detection
of skipped samples or the effect of intermittent sample
clock errors. Each of the examples has similar data when
viewed by either spectral analysis plots or plots of the raw

data against sample time. Plotting against modulo time
brings the data into focus in terms of what is happening
in response to any applied periodic test signal.
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ABSTRACT

Following published procedures for characterizing ADCs
using phase-plane error functions, this paper shows how a
given calibration data set may used to extract estimates of
specific error performance features pertaining to ADC ar-
chitectural considerations. The procedure requires the se-
lection of basis functions based upon properties of a desired
feature. The techniques are applied to the 8-bit TKAD20
operating at 204.8 MSPS to illustrate the concepts dis-
cussed in the paper. Results show how it is possible to
estimate hysteresis and average sample time errors versus
the state of the ADC. A simple consideration shows why
it is not possible to separate sample time errors from the
effects of nonlinear capacitance and a first ever diagnosis
yields sample-time jitter versus ADC state.

1 INTRODUCTION

Previous work[1l] has shown that dynamic error represen-
tations for an ADC can be obtained directly from a set of
sine wave calibration data. The dynamic error is assumed
to be a function of two variables, z and y, where z repre-
sents the output state and y represents an estimate of the
corresponding slope of the state of the ADC output.

L
e(z,y) = Z a:bi(z,y) (1)

i=1

The error function given by (1) is represented over the space
defined by z and y for the set of basis functions, b;. Since y
is a measure of £, the space is often referred to as the phase-
plane for the ADC. Once the coefficients, «;, are determined
for each basis function, it is possible to compensate the
ADC by removing the error estimate from the data as shown
in (2).

zi = z; — e(zi, ¥i) (2

In (2), 2; represents the compensated signal where z; is the
ith sample of the ADC and y; is the slope.

*This work has been supported in part by the ARPA
HBT/ADC program under a contract administered by the Office
of Naval Research Grant N000149311007

Previous publications have not addressed the issue of
what type of basis functions should be used for this prob-
lem. Following neural network procedures for the develop-
ment of training functions, two-dimensional Gaussian func-
tions have been used in the past. These functions have
consistently provided well-behaved solutions to the least
square procedures used to estimate the ADC error func-
tion. The arbitrary use of these functions does not answer
the question of whether there are specific functions that
will more effectively model ADC error mechanisms. This
paper presents some results that have been obtained in a
preliminary look at choosing functions based upon different
architectural features used in the design of ADCs.

Section 2 presents results obtained using specific basis
functions to represent designated error features. In each
case the effect of using a specific basis set is evaluated
by using the error function to compensate the ADC. The
compensation performance is evaluated by measuring the
ADC’s compensated spurious free dynamic range (SFDR)
over the Nyquist band. It should be noted that each of the
specific error functions are estimated by using the same cali-
bration data set, thus not requiring any variations or special
changes in the calibration circuitry. The results therefore
show that a set of calibration data contains all the informa-
tion necessary to estimate particular error features when-
ever pertinent basis functions are used.

2 ADC ERROR FEATURES
2.1 Hysteresis

A test used by ADC manufacturers is the measurement of
differential nonlinearities. This test is performed by using a
computer driven DAC to generate a precision ramp signal.
The ramp takes a specified number of steps through each
state of the ADC. The ADC is sampled several times at
each step with the result that statistics can be assembled
for each quantization interval and threshold [2, 3]. This
test is virtually a static test except that the results differ
for an upward versus a downward ramp. The measurement
thus exhibits a hysteresis phenomenon for the quantization
threshold parameters.

It is possible to observe the same hysteresis by sampling
a pure sine wave signal and constructing an error estimate
using the dominant harmonic distortion terms found in the
FFT of the sample set. When the error estimate is plot-
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Figure 1. Flash converter dynamic hysteresis esti-
mate

ted versus the state of the ADC it is observed that the
error forms an open contour thus illustrating hysteresis as
a function of test frequency and ADC state. Hysteresis is a
dynamic phenomenon and is measurable by using sinewave
data as long as the selected basis functions allow for its rep-
resentation. One way to allow the presence of hysteresis is
shown in (3) using the unit step function.

€ = u(y)f(z) + u(-v)g(=) (3)

¢ represents error and is a particular form of basis that
can be used in e(z,y) in (1). The error in (3) is given by
f(z) when the ADC state is increasing and by g(z) when it
is decreasing. Thus (3) allows two distinct error functions
based upon the slope of the ADC at any of its output states,
zi.

The model was applied by using 32 unit pulse functions
for each of f(z) and g(z). The functions were uniformly
centered over the 8-bit range of the TKAD20 (now Maxim
MAX100), each with a width of eight states. The result-
ing 64 coefficients, a:i, were estimated using least square
methods [1] on the lowest frequency data of the calibration
set; e.g., 2.5 MHz at two amplitudes and with error based
upon the first 20 harmonics of each signal. The resulting
dynamic hysteresis is shown in Fig.1. The solid curve is
error (in LSBs) versus the ADC state for increasing state
whereas the dashed curve is for decreasing states. A hys-
teresis phenomenon is definitely evident for this ADC. The
corresponding error is shown as a two dimensional func-
tion in Fig.2. Clearly there is no # dependence other than
the “cut” at £ = 0 where the function switches from g(z)
to f(z). The error table of Fig.2 is then used to compen-
sate ADC samples. The performance improvement is illus-
trated by means of the measured SFDRs shown in Fig.3
where compensated and uncompensated SFDRs are com-
pared. The graph shows that the hysteresis estimate im-
proves low frequency performance by as much as 6 dB out
to about 20% of the Nyquist band. This measure clearly
shows the extent to which hysteresis is present and should
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Figure 2. Hysteresis error function in z — ¢ space
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Figure 3. SFDR improvement using hysteresis er-
rors
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be accounted for in order to improve the dynamic perfor-
mance of this ADC.

2.2 Sample-time Error

Another important feature that contributes to ADC sample
error is referred to as sample-time jitter. Almost all high-
speed ADCs use some form of Track/Hold (T/H) circuitry
which can contribute to amplitude dependent sample-time
errors. Various techniques are used to try and measure
this phenomenon and most involve precision filters, phase-
locking techniques, and special circuitry to isolate this sec-
ond order effect. An analysis of the response diagram shown
in Fig.4 leads to the following result.

As shown in Fig.4, the state of the ADC is compared to
the T/H control signal used to control the switch. Most
high-speed sample-holds employ current switching through
diode bridge circuits and, as was originally shown by Gray
and Kitsopoulas [4], the switch does not change state until
some point after the command is initiated. The point is de-
termined by the intersection of the desired signal with the
switch transition.

Let z, = ADC state at the sample time kT

Yr= corresponding slope

A — B(t — k7)= Switch transition waveform, then with
6 = sample-time error

we get (4) at the intersection of the two waveforms.
zx+ykb = A— B6 (4)
Rearrangement yields (5).

A—zp
6 = e 5
B + s (5)

The error is given by 8y, so that (6) is obtained by invoking
the fact that B > yk.

=y 4 _sz (6)

(6) shows that sample-time errors yield a polynomial (albeit
a straight line) in the ADC state variable times the corre-
sponding slope. No higher order terms are involved for a
high speed switch.
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Figure 5. The buffer amplifier drives a nonlinear
capacitor

Before testing these error functions it is important to
note that a similar result is obtained from any non-linear
capacitance that is present in the signal path. Generally,
flash comparators yield unavoidable non-linear capacitance
at their input. When several (approaching 2V b“') of these
are paralleled, it is difficult to avoid non-linear capacitance
on the signal path. As shown in Fig.5, the static capad-
tance is modeled with a polynomial in the voltage variable,
ve across the capacitor. The voltage variable, v, at the
buffer output, is the desired ADC state variable. Thus ap-
plying KCL at the capacitor yields (7).

G(v—vec) = GE=d(Cvc)/dt
¢ = R (Z(k + 1)c,.v‘é) v (7)
k=1

The result given in (7) is based on the assumption that ¢
is small hence vc is nearly equal to v and so we obtain the
error form given in (8) for a nonlinear capacitor.

¢ = yp(z) (8)

Nonlinear capacitance in the signal path yields an error ba-
sis function which includes the form just derived for ampli-
tude dependent sample-time error.

A measured error function, using the full calibration data
set is shown in Fig.6. A fifth order polynomial was used for
p(z) and no other basis functions were used to obtain the
error table. Since the sample-time error is given by the
slope times state, as implied by (6), it is possible to use the
error function to obtain an estimate of sample-time error as
a function of ADC state. This result is shown in Fig.7.

In the mid-range of ADC values, which corresponds to
small incremental signals, the sample-time error appears to
have a linear slope thus indicating that the T/H error is
dominant for small signals. As the signal is increased, the
curve exhibits nonlinear behavior thus suggesting that the
nonlinear capacitor dominates sample-time error for large
signals. Note that errors ranging from zero to a few picosec-
onds are obtained from this result without having to resort
to any special circuitry or test procedures.

Finally, the estimated sample-time error function is used
to compensate the ADC to observe how this error repre-
sentation affects performance. The result is shown in Fig.8
where compensated and uncompensated SFDRs are com-
pared. The graph shows that the sample-time error provides
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a significant contribution to dynamic performance for fre-
quencies at the upper end of the Nyquist band. Sample-time
error has negligible effect on low frequency performance of
the ADC as expected since the parameter, y, goes to gero
for low frequency signals.

2.3 Reference Ladder Resistor Values

A final example is used in connection with the develop-
ment of high speed Folding and Interpolating (FAI) ADCs.
These devices are aimed at multi-GHz operation and are
on integrated circuit chips that are hard to probe for full
bandwidth diagnosis. It is therefor useful to have proce-
dures that estimate specific architectural performance for
fully packaged devices. The methods developed here are
applied to a simulated FAI ADC and are used to estimate
specific resistance variations in a resistor ladder used to set
threshold voltages on 2 Coupled Differential Pair (CDP)
array in a FAI architecture.

A block diagram of the simulated FAT 8-bit converter is
shown in Figure 9. The converter architecture is modeled
after an 8-bit 3 GSPS converter being developed under the
ARPA HBT/ADC program. Circuit level simulations of
Coupled Differential Pairs (CDPs) were used to form out-
puts for two folding amplifiers, each with a folding ratio
of eight. The amplifier outputs are used to drive a resis-
tive interpolation network, producing a total of 32 folding
characteristics. Each of these signals drives a comparator.
The comparator outputs are then encoded to determine the
five least-significant bits of the converter output. The CDP
outputs are used to construct the three most significant bits
of the output. A digital error correction scheme is used to
ensure that MSB transitions remain aligned with the LSBs.

A variety of error mechanisms could be enabled or dis-
abled through the introduction of non-ideal components
into the simulation model. For each mechanism investi-
gated, a “footprint” of the phenomenon can be developed
which describes the contribution of each non-ideality to the
nonlinearity of the converter. For the FAI architecture, sev-
eral features have easily identifiable characteristics, so that
observed ADC errors can be mapped back into likely causes
within the design or manufacture of the device [5]. For ex-
ample, resistive voltage dividers are used both in the gen-
eration of CDP reference voltages, and in interpolation. 22
resistors are used to set reference levels for 22 CDPs that
generate quadrature voltage dependent waveforms across
the ADC signal (state) space. The ladder is shown in Fig.10.
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ror for a single erroneous resistor in the CDP ref-
erence generation network.

An error in a single resistor in the CDP reference voltage
network produces an error characteristic as shown in Fig.11.
The piece-wise connected characteristic contains two linear
regions with the location of the transition depending upon
which resistor is in error.

Other error mechanisms are present in the model for the
FAI ADC. For a converter with folding ratio 8, an error
in a single resistor in the interpolation network affects the
converter’s output in 8 distinct regions. Similarly, errors
due to non-ideal and finite bandwidth CDP circuits, used
to model folding amplifiers, are found to be input signal
slope dependent. Unlike resistor errors, CDP errors tend to
be smooth functions of both the voltage (state) and its time
derivative. These errors were all included in the simulated
ADC model.

Each resistor within the CDP reference voltage network
is identified with a separate basis function, similar to that
shown in Fig.11. Sets of simulated FAI ADC samples for
sinusoidal inputs were collected and used to estimate ap-

o B
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Figure 12. Actual vs Estimated Errors in CDP Ref-
erence Resistors

propriate values for a; in (1) which are then mapped into
estimates of specific component error [5]. Fig.12 shows a
plot of estimated errors for the 22 resistors used in the CDP
threshold generation network. Also shown are the actual er-
rors which were used in the simulation (a 2% tolerance was
used to randomize values). The plot shows close agreement
between actual and estimated errors for the converter’s re-
sistor array.

These results illustrate a powerful procedure for diagnos-
ing sources of distortion introduced by an ADC. Unique
error features can be exploited to obtain procedures for de-
ducing internal errors by means of external measures on a
device. By isolating flaws, designers are given insight into
required design or fabrication process modifications. In ad-
dition, external measurements are useful since it is not al-
ways practical to perform on-chip dynamic testing of UHF
integrated circuit stages or subsections.

3 CONCLUSIONS

This paper has introduced the concept that particular basis
functions can be selected to measure specific ADC archi-
tectural error phenomena. An 8-bit wide-band flash con-
verter was used to illustrate the estimation of both hystere-
sis and sample-time errors from a single set of calibration
data merely by changing the basis functions used to esti-
mate dynamic error functions. An analysis showed that
non-linear capacitance requires a basis function that in-
cludes the basis required for the estimation of sample-time
errors due to T/H switching. Hysteresis error modeling im-
proved the ADC low frequency performance while sample-
time and non-linear capacitor error modeling improved high
frequency performance.

Error phenomena considered in this paper did not con-
tribute significantly to midband performance of the ADC.
The use of two- dimensional Gaussian, or sinc, functions
uniformly distributed over z,y space has historically pro-
vided significant improvement for the midband region of
the ADC {1]. Work is currently in progress to find alter-
natives to the algorithms implied by (1) to gain sensitivity
to differential error. This extension is required in order to
investigate more complicated sources of error, such as dif-
ferential time-delays in the interpolator output paths for
high-speed FAI devices.
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ABSTRACT

A common technique to acheive high sample rates for ana-
log-to-digital converters (ADCs) is to time interleave two
or more devices. A drawback of this approach is that mis-
matches between the devices cause distortion in the sam-
ple sequence. This distortion limits the dynamic range
which may be acheived using a particular ADC. Although
phase-plane compensation techniques exist to improve the
dynamic range of ADCs, these techniques are ineffective
for time-interleaved structures. This paper extends the ex-
isting phase-plane modeling techniques to time-interleaved
architectures. The modified algorithms are tested using a
500 MSPS ADC and are shown to reduce harmonic and
intermodulation distortion terms by well over 10 dB.

1. INTRODUCTION

Many high-speed Analog to Digital Converters (ADCs)
achieve high sample rates by time interleaving two or more
converters. For example, a 1000 MSPS converter might be
implemented using two 500 MSPS converters taking sam-
ples on alternating clock pulses. One problem with this
technique is that mismatches between the two converters
introduce distortion into the output sample sequence. For
communications applications, this distortion fundamentally
limits the potential dynamic range of a receiver which uses
time-interleaved ADCs. Dynamic compensation techniques
have been developed which use post-processing of the ADC
output samples to improve the potential dynamic range
[1]. These procedures are capable of reducing the harmonic
distortion which is introduced by a single (time-invariant)
ADC. However, the techniques are not capable of removing
intermodulation of signals with the sampling clock, which
is a dominant distortion characteristic for time-interleaved
structures. This paper presents a modification of the dy-
namic compensation algorithm of [1] which may be used to
compensate these high-speed structures.

Section 2. illustrates the distortion caused by the time-

*This work has been supported in part by the ARPA
HBT/ADC program under a contract administered by the Office
of Naval Research Grant N000149311007, the Army Research Of-
fice Grant DAAH04-94-G-0387, and by NSF Agency per Grant
EEC-9300004.

interleaved structure by presenting measured results for a
500 MSPS ADC. The development of the modified calibra-
tion algorithm is given in Section 3.. Section 4. presents
experimental results using the new procedure.

2. DISTORTION CAUSED BY
TIME-INTERLEAVING

The modified algorithms were tested using measured data
from a Tektronix AD-10 converter. The AD-10 is an 8-bit
500 MSPS ADC with on-chip track and hold. A block-
diagram of the converter is shown in Figure 1. Internally,
two 8-bit 250 MSPS converters are time-interleaved to ob-
tain the 500 MSPS sample rate. Each converter has a sepa-
rate set of individually controllable reference voltages. A
typical output spectrum from the converter is shown in
Figure 2. The spectrum was obtained using a sampling
frequency of f; = 512 MSPS, and driving the converter
with a pure sinusoid with test frequency fr = 175.1256M Hz
(harmonics < 100 dBc). The spectrum shows a variety of
spurious signals which are typical of time-interleaved ar-
chitectures. Signals which are harmonically related to the
input signal are labeled by their harmonic number. For this
converter, high order harmonics are fairly small relative to
the 2nd and 3rd harmonics. The remaining large spurious
signals in the spectrum are a result of the time-interleaved
architecture. Mismatches between the two converters used
to form the sampler modulates the sampled signal at fre-
quency fs/2 = 256 M Hz. The result is a pair of spurious
signals located at f;/2+ fr (80.875 MHz and 431.125 MHz).
The remaining spurious signal located at 256 MHz is due
to a DC offset between the two samplers.

Analog adjustments are available to set the reference volt-
ages for the two converters independently, and to adjust
the relative phase for the sampling clocks of the convert-
ers. Careful adjustment of these voltages can reduce the
gain and offset mismatches for the converter. Several fac-
tors limit the effectiveness of this approach. First, the gain
and phase mismatches are a dynamic phenomenon, and it
is difficult or impossible to obtain effective settings over
the entire bandwidth of the converter. Secondly, each of
the converters is applying a unique non-linear function to
its input. Even if the converter gains could be perfectly
matched, an intermodulation signal located at fs/2 & fr
would still be present, since the functional form of the non-
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Figure 2. Typical spectra of the output samples
from a time-interleaved converter for a pure sinu-
soidal input.

linearity would alternate on every clock pulse.

3. ALGORITHM DEVELOPMENT

Our goal is to extend the dynamic compensation algorithms
of [1] to use post-processing of the digital samples to re-
move both the harmonic distortion and the intermodulation
terms. For a dynamic compensation, the error introduced
by the converter for the kth sample is expressed as a func-
tion of the converter’s output sample, zx, and the slope of
the signal, y, at the sample instant. In practice, y; must
be estimated from the data sequence, or measured using
additional circuitry. (In this paper yi is obtained using an
FIR filter.) A compensated sample may be written as

2 = Tk — e(Tk, Yk)- (1)

A calibration algorithm is required to find the function
e(Zk, yx) such that spurious signals are eliminated from the

compensated sequence z. If the functional form of e(zx, yx)
does not change with time, then (1) can only influence spu-
rious components which are harmonically related to the in-
put signal. For a time-interleaved converter, the functional
form of e(zk, yx) must be allowed to change for every other
sample (extensions to more than two converters is straight-
forward).

ez, ye) = { es(Tk, Yk) k even

eo(zk, yk) k odd )

A possible calibration procedure is to drive the converter
using a sinusoidal test signal, collect N samples of the con-
verter output, and solve for e(zk, yx) such that the spurious
signals in the compensated sequence z; are removed. The
strength of these spurious signals are given by the DFT of
ZE:

N-1
ape—I2ER/N _
k=0
N-1 N-1
Z zke—~j21rkn/N _ Z e(zk,yk)e—j%rkn/N (3)
k=0 k=0

A flexible form for the error function which allows for ef-
ficient numeric evaluation is to use an arbitrary linear com-
bination of a set of fixed basis functions bi(zk, yx).

M

es(Tr,yx) = Zazbt(ﬁk,yk) (4)
l:—/!l

eo(xk, yx) = Zﬂzbz(mk,yk) (5)

=1

The calibration procedure must solve for the appropriate set
of coefficients oy and 3; which remove the spurious compo-
nents in zx. Let n1,n2,...n. denote values of n in (3) which
correspond to significant spurious terms for a given input
signal (for example, 2nd and 3rd harmonics, and fs/2— fr).
The goal is to find coefficients which make the left side of
(3) zero for these values of n. Substituting (4) and (5) into
(3), and setting the left side of the equation to zero yields

M M
E (o] .
Xo; =Y Bl +Y BB i=12...,L (6)
=1 =1

where

N-1

.an. = Z mke—_ﬂwkn; N (7)
k=0

B = 3 bk, yk)e N (8)
k even

B = Y bifwk,yr)e PN, (9)
k odd

Equation (6) gives L complex equations with 2M un-
knowns. Additional equations may be obtained by driv-
ing the converter with different calibration test frequencies.
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even sample converter for the time-interleaved
AD10 ADC.

Typically, calibration data is obtained with fr ranging over
the entire band of operation for the device. A large system
of equations may be formed in this manner. The equations
are solved in the least-squares sense to obtain good values
for the unknown coefficients.

4. RESULTS AND CONCLUSIONS

The above calibration procedure was implemented for the
AD-10 converter. Ten calibration frequencies from DC to
180 MHz were used. Fifty Gaussian basis functions, cen-
tered on equally spaced intervals in the z; — yi space, were
used to formulate each of the error characteristics. Follow-
ing calibration, the DC offset between the even and odd
sample sets was estimated and subtracted from the odd
samples to reduce the f;/2 term of the output sequence.
Plots of the error characteristics for the even and odd sam-
ple converters are shown in Figures 3 and 4. Clearly the two
characteristics are dramatically different from each other,
and use of a single correction characteristic for this con-
verter is not appropriate.

A typical spectrum for the compensated sample set is
shown in Figure 5. The results show that the above calibra-
tion procedure reduces both harmonic and intermodulation
terms by well over 10 dB. A measure of the performance of
the compensation procedure is the Spurious-Free Dynamic
Range (SFDR). The SFDR is defined as the dB difference
between the magnitude of the test signal and the magni-
tude of the largest spurious tone in the full spectrum of the
output sample sequence. The compensated and uncompen-
sated SFDR was measured for the AD10 converter using
test frequencies ranging over the entire Nyquist band. Fig-
ure 6 shows the resulting improvement which was obtained
using the time-interleaved compensation scheme.
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ABSTRACT

This paper provides an error analysis for Folding and In-
terpolating (FAI) analog to digital converters, and presents
a diagnostic tool for identifying likely causes for measured
distortion. FAI converters are efficient since they require a
smaller number of components than a classical flash archi-
tecture. They reduce both power consumption and die-size,
while operating at frequencies comparable to fully parallel
architectures. Error mechanisms causing output distortion
are identified and explained, and an effective computer sim-
ulation module is created that allows error mechanisms to
be emphasized or suppressed. For the FAI architecture, var-
ious anomalies in the construction of the device are shown to
produce specific and identifiable characteristics of the con-
verter’s behavior. These characteristics may be exploited in
order to diagnose the possible causes of distortion which is
observed for a particular device. Techniques are developed
which allow measured converter characteristics to be used
to isolate flaws, giving designers insight into required design
or fabrication process modifications.

1. INTRODUCTION

The concept of signal folding in the implementation of
ADCs was first introduced by Arbel and Kurz [1] in 1975.
The main motivation was the dramatic reduction of the
number of comparators required in the design. Different
ways of producing the folding signals have been proposed
since then, but the most popular method involves the use
of coupled differential pairs (CDPs) [2]. Almost concurrent
with the introduction of the CDPs is the concept of resis-
tive interpolation, which produces additional folding signals
without requiring additional CDPs.

The diagnostic procedures introduced in this paper rely
heavily on the concept of ADC compensation, introduced by
Irons and Rebold [3]. Since then, researchers have worked
extensively in the field of compensating dynamic errors
in high-speed analog-to-digital converters, developing the
method of phase plane compensation. This method assumes
that the ADC error is mainly a function of the converter’s
state and the input signal’s slope, and focuses on creating
an error correction look-up table. Different techniques for
obtaining required calibration data have been introduced.
Although several methods of compensation have been devel-
oped, this paper will rely heavily on the non-iterative ADC

*This work has been supported in part by the ARPA
HBT/ADC program under a contract administered by the Of-
fice of Naval Research Grant N000149311007 and the DEPSCoR
program through the Army Research Office Grant DAAHO04-94-
G-0387
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Figure 1. Block Diagram for a Folding and Inter-
polating Converter.

characterization procedure introduced in [4], since it allows
the use of basis functions to model converter errors. An
efficient algorithm that selects the most appropriate basis
functions out of a set of possible candidates is also exten-
sively utilized to produce estimates of the converter’s error
function [5].

The technique for performing diagnostics on an analog
to digital converter presented in this paper is believed to
be novel. Although past schemes have successfully com-
pensated ADCs, this paper introduces the selection of basis
functions to model distinct error mechanisms. This allows
for the diagnosis of the error mechanisms that contribute
to the converter’s output distortion.

To verify the performance of the diagnostic techniques, an
FAI converter was simulated, so that specific architecture
related flaws could be introduced or suppressed. Section 2.
describes the particular FAT architecture which was investi-
gated, summarizes the simulation techniques, and describes
a variety of anomalies and their effect on the performance
of the converter. Section 3. introduces the technique used
to isolate the dominant error sources for a packaged FAI
converter. Simulation results illustrating the potential of
the procedure are presented in Section 4.

2. FAI ERROR CHARACTERISTICS

A block diagram of the simulated FAI 8-bit converter is
shown in Figure 1. The heart of the converter is an array
of coupled differential pairs. Each CDP is designed to be-
come active over a small range of voltages within the ADC’s
allowable input range. For this simulation, the outputs of
eight CDPs were combined to produce a complementary
folding amplifier characteristic which breaks the input volt-
age range into eight equal-sized regions. By varying the
threshold voltages at which the CDPs become active, four




different offset folding characteristics were generated. The
set of threshold voltages used in the design of the CDP ar-
ray are determined by a resistor voltage divider. Each of the
four folding amplifier outputs are used to drive a resistive
interpolation network, producing a total of 32 offset folding
characteristics. Each of these signals drives a comparator.
The comparator outputs are then encoded to determine the
five least-significant bits of the converter output. The CDP
outputs are directly used to construct the three most sig-
nificant bits of the output word. A digital error correction
scheme is used to ensure that the MSB transitions remain
aligned with those of the LSBs.

A variety of error mechanisms could be enabled or dis-
abled through the introduction of non-ideal components
into the simulation model. For each mechanism investi-
gated, a “footprint” of the phenomenon can be developed
which describes the contribution of each non-ideality to the
nonlinearity of the converter. For the FAI architecture,
many of these characteristics have easily identifiable charac-
teristics, so that observed ADC error characteristics can be
mapped back into likely causes within the design or manu-
facture of the device. In order to isolate the causes of dis-
tortion in the output of an FAI converter, it is important to
understand the characteristics of the various possible error
sources.

Circuit level simulations of Coupled Differential Pairs
(CDPs) were used to form dynamic models for the out-
puts of four folding amplifiers, each with a folding ratio of
eight. Transistor parameters were selected which were con-
sistent with a device operating at 3 GSPS. The nonlinear
response of a single differential pair was parameterized as
a function of the dynamic properties of the input signal.
This model was then used to construct a realistic model
for the entire CDP array, which was incorporated into the
block-diagram of Figure 1. By using ideal values for all com-
ponents within the FAI converter except for the (non-ideal
and finite bandwidth) CDP structures, the contribution to
the FAI converter distortion from these structures may be
examined. Not surprisingly, the errors due to the CDP cir-
cuits used to construct the folding amplifiers may be shown
to be input signal slope dependent. These errors tend to be
smooth continuous functions of both the input voltage and
its derivative.

Another possible source of distortion is non-ideal resis-
tor values. Resistive voltage dividers are used both in the
generation of the CDP reference voltages and in the inter-
polation networks. An error in a single resistor in the CDP
reference generation network will result in errors in all of
the CDP reference voltages. It can be shown that an error
in the m*® resistor yields an error in the x** CDP threshold
voltage given by

(Vinas = Vonin) [ = ] < m
£ = (1)
(Vmam - Vmin) [‘Aﬁ% - ']%] M 2 m
where Vipez and Vinin are the voltage references for the di-
vider, M is the number of resistors, and e, is the fractional
error in the mt" resistor. Figure 2 shows a plot of these
predicted CDP threshold values, as well as a graph of the
simulated converter error using ideal component values for
all other components in the converter. The characteristic
is composed of piecewise connected linear functions. The
transition has a width of 1/32 of full scale and its location
depends upon which resistor is in error.
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Figure 2. Theoretical and simulated average FAI
ADC error for a single erroneous resistor in the
CDP reference generation network.
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Figure 3. Average FAI ADC Error for a single er-
roneous resistor in the interpolation network.

An error in an interpolation network resistor results in a
very different distortion in the output. For a converter with
a folding ratio of 8, an error in a single interpolator resistor
influences the converter’s output in 8 separate regions. A
typical characteristic is shown in Figure 3. The characteris-
tic has the same functional form as that given in (1), except
that in this case (Vinaz — Vimin) is one thirty-second of the
full-scale range of the converter, and the characteristic is
repeated over eight different regions. The location of the
discontinuity, and the particular region which is affected is
a function of which interpolation resistor (of 32) is in error.

3. ISOLATION OF ERROR CAUSES

The uniqueness of the various error characteristics may be
exploited to obtain procedures for deducing the error causes
from the behavior of the device. Procedures exist for esti-
mating the error introduced by a device as a linear com-
bination of a set of user-selected basis functions [4]. The
formulation has the form

N
e(z,9) = Y asbi(z,y), )

i=1

where e(z,y) denotes the error introduced by the converter
as a function of the converter input £ and the derivative
of the input y. bi(z,y) denotes a basis function, and a; a
coefficient which may be solved for using measured data.
The contribution of this paper is the identification of a set
of basis functions which model errors introduced by various
components of the FAI structure. Under this formulation,
the values of a; may be linked to specific flaws within the
device.




For example, for the 8-bit converter simulated in this pa-
per, separate basis function can be selected to model each
possible source of error. Errors due to the non-ideal folding
amplifier characteristic are smooth functions of both the in-
put voltage and its derivative, and may be modeled using
low-order polynomials. Errors due to each resistor within
the CDP reference voltage divider may be modeled using a
separate basis function given by (1). Basis functions sim-
ilar to that shown in Figure 3 may be used to reflect the
error contribution from each resistor in the interpolation
network. The goal is to select appropriate basis functions
which reflect possible error mechanisms within the device
being tested {6).

Using a set of measured output samples, an error model
with the form of Equation (2) may be constructed. In this
work, a “Fast Orthogonal Search” (FOS) algorithm was im-
plemented to select the appropriate set of basis functions
from the set of candidate functions [5]. Under this proce-
dure, the set of candidate functions is searched to find the
basis function which provides the most significant reduction
to the squared error of the error model. This basis function
is then added to the model. The procedure is repeated until
the specified number of basis functions has been selected,
or until the model reaches a desired accuracy with respect
to the measured data. Using this procedure improves the
numerical stability of the algorithm, and provides insight
into which basis functions are dominating the error charac-
teristic. The set of selected basis functions, and the corre-
sponding coefficients a; may then be used to deduce which
of the possible error phenomena are dominating the distor-
tion characteristics of the device.

4. SIMULATION RESULTS

The results of this procedure are illustrated in Figures 4 and
5. The simulation was performed for an 8-bit 3 GSPS con-
verter. A collection of output samples for sinusoidal input
signals was collected and used to estimate the appropriate
values of o; in equation (2). These values of error basis
function coefficients are then mapped into estimates of the
specific component errors. Figure 4 shows a plot of the esti-
mated errors for the 44 resistors used in the CDP threshold
generation network. Also shown are the actual errors which
were used in the simulated converter (a 2% tolerance was
placed on the randomized resistor values). The plot shows
close agreement between the actual errors and the errors
estimated from the converter’s output. Similarly, Figure 5
shows the estimated and actual error introduced through
the non-ideal behavior of the CDP network used to gen-
erate the folding amplifiers. Once again, close agreement
was obtained. Errors introduced by the interpolation net-
work were found to be extremely small in comparison to
the CDP references and the CDP network. Basis functions
associated with this error source were not generally selected
by the FOS algorithm as providing a significant source of
distortion.

5. CONCLUSION

These results illustrate a powerful new procedure for diag-
nosing the cause of distortion which is introduced by an
ADC. For the FAI architecture, various flaws in the device
have been shown to produce specific and identifiable charac-
teristics of the converter’s behavior. By matching the func-
tional form of an error model using these characteristics to
a set of measured samples from an FAI converter, one may
diagnose possible causes of distortion which is observed for
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a particular device. By isolating flaws, designers are given
insight into required design or fabrication process modifi-
cations. Work is currently underway to find alternatives to
the algorithms of [4] to gain sensitivity to differential error
in the converter being tested. This extension is required
to investigate more complicated sources of error, such as
time-delays in the signal paths for high-speed devices.
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ABSTRACT

Procedures have been developed to apply ADC modeling
techniques to the diagnosis of high-speed Folding Ampli-
fier Interpolating Resistive (FAIR) networks. This paper
presents results and describes procedures used to obtain
measures for specific errors.

1. INTRODUCTION

For some time, it has been known that Analog-to-Digital
Converter (ADC) dynamic errors can be modeled using
phase-plane functions [1]. This study shows how it is possi-
ble to obtain estimates of particular types of errors by using
specific basis functions to develop error function models for
an ADC. The work presented in this paper is applied to
Folding Amplifier Interpolating Resistive (FAIR) networks
what were used as basic building blocks for the development
of high-speed ADCs under the ARPA HBT/ADC program.
Unique aspects of the developed methods are that the pro-
cedures are applied to fully packaged ADC devices to esti-
mate internal errors, such as reference resistor values, ref-
erence voltage levels, or signal compression. For the FAIR
architecture, various anomalies in the construction of the
device are shown to produce specific and identifiable char-
acteristics of the converter’s behavior. These characteristics
may be exploited in order to diagnose the possible causes
of distortion which is observed for a particular device.

The methods are tested on simulation models (for which
all errors are known). The following sections describe the
particular converter architecture examined. The functional
form of various potential error sources are then presented.
These functions are used to identify the appropriate set of
basis functions to describe the error characteristic, provid-
ing a means of mapping measured characteristics into pos-
sible causes. A series of simulations results illustrating the
potential of the approach are then presented.

2. FAIR ADC ERROR SOURCES

A block diagram of the simulated FAI 8-bit converter is
shown in Figure 1. The converter architecture is modeled
after an 8-bit 3 GSPS converter being developed under the
ARPA HBT/ADC program. Circuit level simulations of
Coupled Differential Pairs (CDPs) were used to form the
outputs of two folding amplifiers, each with a folding ratio

*This work has been supported in part by the ARPA
HBT/ADC program under a contract administered by the Of-
fice of Naval Research Grant N000149311007 and the DEPSCoR
program through the Army Research Office Grant DAAH04-94-
G-0387
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of eight. These amplifier outputs are used to drive a resis-
tive interpolation network, producing a total of 32 folding
characteristics. Each of these signals drives a comparator.
The comparator outputs are then encoded to determine the
five least-significant bits of the converter output. The CDP
outputs are directly used to construct the three most sig-
nificant bits of the output word. A digital error correction
scheme is used to ensure that the MSB transitions remain
aligned with those of the LSBs.

A variety of error mechanisms could be enabled or dis-
abled through the introduction of non-ideal components
into the simulation model. For each mechanism investi-
gated, a “footprint” of the phenomenon can be developed
which describes the contribution of each non-ideality to the
nonlinearity of the converter. For the FAI architecture,
many of these characteristics have easily identifiable char-
acteristics, so that the observed ADC error characteristic
to be mapped back into likely causes within the design or
manufacture of the device. For example, resistive voltage
dividers are used both in the generation of the CDP refer-
ence voltages, and in the interpolation network. An error in
a single resistor in the CDP reference generation network
will be shown to produce an error characteristic as illus-
trated in Figure 2. The characteristic contains two linear
regions connected by a linear transition with width 1/16
of full scale. The location of the transition depends upon
which resistor is in error.  An error in an interpolation
network resistor results in a very different distortion in the
output. For a converter with folding ratio 8, an error in a
single resistor in the interpolation network may be shown
to influence the converter’s output in 8 separate regions. A
typical characteristic is shown in Figure 3. Similarly, errors
due to the (non-ideal and finite bandwidth) CDP structures
used to construct the folding amplifiers may be shown to
be input signal slope dependent. Unlike the resistor errors,
these errors tend to be smooth functions of both the input
voltage and its derivative.
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3. DEVICE CHARACTERIZATION

The uniqueness of the various error characteristics may be
exploited to obtain procedures for deducing the error causes
from the behavior of the device. Procedures exist for ob-
taining accurate models for the error introduced by a device
as a linear combination of a set of user-selected basis func-
tions [2]. The formulation has the form

N
e(z,y) = Y aibi(z, ), ¢

i=1

where e(z,y) denotes the error introduced by the converter
as a function of the converter input = and the derivative
of the input y. bi(z,y) denotes a basis function, and «; a
coefficient which may be solved for using measured data.
The contribution of this paper is the identification of a set
of basis functions which model errors introduced by various
components of the FAI structure. Under this formulation,
the values of a; may be linked to specific flaws within the
device.

4. RESULTS

The results of this procedure are illustrated in Figures 4
and 5. The results are obtained by associating separate
basis functions with individual components of the FAI con-
verter. For example, each resistor within the CDP reference
generation network is identified with a separate basis func-
tion, similar to that shown in Figure 2. The simulation
was performed for an 8-bit 3 GSPS converter. A collection
of output samples for sinusoidal input signals was collected
and used to estimate the appropriate values of ¢; in equa-
tion (1). These values of error basis function coefficients
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are then mapped into estimates of the specific component
errors. Figure 4 shows a plot of the estimated errors for the
44 resistors used in the CDP threshold generation network.
Also shown are the actual errors which were used in the
simulated converter (a 2% tolerance was placed on the ran-
domized resistor values). The plot shows close agreement
between the actual errors and the errors estimated from the
converter’s output. Similarly, Figure 5 shows the estimated
and actual error introduced through the non-ideal behavior
of the CDP network used to generate the folding amplifiers.
Once again, close agreement was obtained. These results il-
lustrate a powerful new procedure for diagnosing the cause
of distortion which is introduced by an ADC.
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Abstract— This paper addresses the measure-
ment of random sample-time jitter in the char-
acterization of ADC’. A straightforward test is
developed which allows for measurement of both
additive noise power and RMS sample-time jitter.
Simulations are used to assess the accuracy of the
technique. Experimental results are also given for
a commercially available ADC.

I. INTRODUCTION

Analog-to-Digital Converters (ADC’s) are often charac-
terized in terms of the amount of noise which is intro-
duced into the signal during the sampling process. Most
ADC manufacturers provide specifications for the number
of “effective bits” which the converter is providing. This
specification includes the contribution due to a wide vari-
ety of noise sources, including thermal and shot noise in
the input stages of the converter, errors in the quantiza-
tion thresholds, and noise which is present on the clock
signal.

For many applications, it is desirable to know not only
the amount of noise which the converter is introducing,
but also the source of the noise. From an ADC designer’s
point of view, knowledge of whether noise which is intro-
duced through the input signal path, or through insta-
bility in the clock signal is critical to focusing the design
effort. Similarly, users of ADC’s need techniques to isolate
noise sources. Converters may exhibit noise levels which
are higher than the specifications predict either because
of improperly driving the converter, or because of a loss
of integrity in the sampling clock.

In this paper, a technique is presented which allows for
the separation of additive noise sources from noise which
is introduced through sample time jitter. The test is per-
formed by driving the converter using a sinusoidal source,
and removing all significant distortion that the converter
introduces. The resulting noise process contains quanti-
zation noise, thermal noise from the converter input, and

*This work has been supported in part by the ARPA HBT/ADC
program under a contract administered by the Office of Naval Re-
search Grant N000149311007

noise which is introduced from sample time jitter. In Sec-
tion Il.we show that the sample-time jitter noise has a
time-varying variance, since this noise signal is modulated
by the derivative of the input signal. A procedure is in-
troduced which measures the power in the modulated pro-
cess, and relates this quantity to the RMS deviation in the
sample time. Simulation results verifying the procedure
are presented in Section III. Section IV presents measured
results obtained using a commercially available 250 Msps
converter.

It should be stressed that variations in the sampling in-
stant which are related to the input signal may also result
in distortion. In this paper we do not attempt to charac-
terize the distortion which is introduce by misalignment of
the clock signal. Rather, we are concerned with the mea-
surement of the random component of the sample time
deviations which contribute to the noise floor of the con-
verter. Measurement of sample-time deviations which re-
sult in distortion introduced by the converter is discussed
in another paper [1].

II. FORMULATION

Let z(t) denote the input signal to an ADC. The output
of the converter is a sequence of samples y, given by

e = 2(kT, + Ax) +9(2(2)) le=pr, +m (1)

In (1), T, represents the ideal sampling period for the con-
verter, g() represents a nonlinear function to model distor-
tion which is introduced by the converter, and n; denotes
an additive noise component which is due to dithering,
quantization noise, and noise sources in the input stage
of the converter. The A term of (1) represents the (ran-
dom) deviation in the sample time. Our goal is to identify
techniques to estimate the variance of the random com-
ponents Ay and ny, denoted 04 and o2 respectively. The
RMS sample-time jitter is the standard deviation of Ay,
OA.

Note that in (1), the distortion function g() may depend
not only on z(t) but also on the dynamic properties of z(t)
(its derivatives). The magnitude of g() is generally kept




small-on the order of an LSB. Also, manufacturers at-
tempt to control the sampling instant so that Ay is small
relative to the rate of change of the input signal. Using
this fact, y; may be accurately modeled in terms of the
true sample value z(kT,) and an additive noise compo-
nent.

ve % 2(KT) + Apd(KT) + g(2(8)) Lo, +me (2)

The key to separating the contribution to the noise floor
due to Ay from that of np is to take advantage of the
fact that Ay is modulated by the derivative of the input
signal (errors introduced due to sample-time deviations
are largest when the input signal is changing quickly).
For measurement of the noise variance, we may drive the
converter using a sinusoidal source.

z(t) = Acos(wot+0) (3)
ye = Acos(wokT, +0) + g(z(t)) le=kr,
—Awo A sin(wokT, + 0) + ny (4)

In this case, the distortion function g() is periodic, so that
the first line of (4) may be removed from the sample se-
quence {y;} by finding the FFT of the sequence, and ex-
cising all frequencies which are harmonics of the input fre-
quency wo. Note that the Ay term of (4) is not removed
by this process. This term is a random sequence with
variance which is periodic at frequency wg. The resulting
sequence (with periodic components removed) is

er = —AwoAy sin(wokT, + ) + ng (5)

To estimate the variance of the components of (5), we
square e and evaluate the expected value.

E{el} = E{A%3A]sin*(wokT, +6) +n}}

A2 2A2
= E{(—wzo k—l—ni)

2,2 A2
Aol cos(2wokT, + 26)} (6)
A2w2o2
_ (M + (,31)
2
A2w202
_ £ %% cos(2wokT, + 26) (7N

The procedure for estimating the variance 0% is now ap-
parent. The sequence {e?} contains a discrete frequency
component at twice the test frequency which has mag-
nitude proportional to the desired variance. Once 0% is
known, the variance of the additive noise component o2
may be estimated from the DC component of {eZ}.

The procedure is summarized in the following steps:

1. Drive the converter input with a sinusoidal signal
with frequency wo = m(w,/N), where w, = 27/Tj,
N is the number of samples collected, and m is an
integer. Selection of N as a power of 2, and m as
an odd number makes the calculation of the FFT
fast, and excites the converter uniformly across the
desired states.

2. Collect N samples, {yx : &k = 0,1,...,N — 1}.
Remove the periodic components of {yx} by taking
an FFT, removing the DC, fundamental, and all sig-
nificant harmonics of wg, and calculating the inverse
tranform of the remainder. The resulting sequence
is denoted {ex}.

3. Evaluate the FFT of the sequence {e?}.

N-1 v
E. = Z ele~IZmmk/N (8)
k=0
Let Co denote the DC term of the signal (Co =

Ey/N), and let C; denote the magnitude of the 2wq
term (Cz = 2|E2m|/N)

4. Calculate the desired estimates:

R 2C,
6% = Aa? (9)
62 = Co—Cy (10)

In step 4, the value of A may be obtained by observing
the wo term of the transform taken in step 2. While the
theory holds for any input frequency, in practice wo must
be chosen large so that the 2w term of step 3 is well above
the noise floor. Equation (7) predicts that the strength of
the second harmonic term increases quadratically with wo.

I11. SIMULATION RESULTS

To test the accuracy of the estimation procedure, a sim-
ulation was developed which included a known amount
of sample-time jitter. The equations giving the distortion
terms of the ADC model are taken from [2]. Let z; denote
the (dithered) sample z(kT, — Ag) + di, where di denotes
a random dither component which is added to the signal
prior to sampling in order to randomize the quantization
error. The output of the converter is determined as fol-

lows:
- it
£ = atanh ( 5 ) (11)
Tz = Tytcdg— d]:z:2|i:2 (12)
T4 = T3+ [1 — cosh (ij)] (13)
v = Q(z4) (14)
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Figure 1: Estimation of ¢,,. The solid line indicates the
average estimate, and the dotted lines give 43 standard
deviation bounds. The dash-dot line indicates the actual
value of o, for the simulated ADC.

Equations (11) and (13) reflect amplitude distortion in the
input and buffer amplifier stages of the converter. Deter-
ministic sample-time offsets result in (12), which is deriv-
able from a symmetrical quad-switching circuit following
the analysis of Gray and Kistopoulas [3]. In (14), the
function Q() is used to represent quantization to one of
2" values for an n-bit converter.

All of the results presented here were for a simulated 8-
bit converter sampling at 200 MSPS with a peak-to-peak
full scale range of 2 V. The simulation parameters used
werea=b=4,c=d=3x 10711, and e = 7.25. The pa-
rameters were chosen to give distortion terms which were
roughly consistent with the measured distortion for the 8-
bit converter tested in Section IV.. The additive dither dj
was chosen to be a Gaussian random variable with vari-
ance equal to the quantization noise power. This gives
a theoretical value of o,, = 1/\/5 = 0.4082 LSBs. A;
was also chosen to be Gaussian, with standard deviation
oa = b psec. Test frequencies were varied from 10 MHz to
200 MHz with 50 trials at each frequency. For each trial,
4096 input samples were generated and used to form esti-
mates of o, and oga. Step 2 of the estimation algorithm
was implemented by removing the first 20 harmonics of
the test signal frequency. Figures 1 and 2 illustrate the
results. As expected, the estimate of oo improves with
increasing test signal frequency, as the second harmonic
term of (7) comes out of the noise floor. Both estimates
appear to be nearly unbiased for large test signal frequen-
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Figure 2: Estimation of oa. The solid line indicates the
average estimate, and the dotted lines give 3 standard
deviation bounds. The dash-dot line indicates the actual
value of oa for the simulated ADC.

cies.

IV. EXPERIMENTAL RESULTS

The estimation procedure was implemented on a Tek-
tronix AD-20 8-bit converter sampling at 204.8 MSPS.
Examination of the spectrum (8) showed a significant
component at f;/2 in addition to the expected terms at
DC and 2wg. The presence of this term suggested that
the converter was actually a time-interleaved converter,
employing two converters sampling alternately. To test
the observation, the sample sequence was broken into two
separate sequences—the first containing the odd numbered
samples, and the second containing the even numbered
samples. Each of these sample sequences displayed only
the DC and 2w terms predicted in Section IL.

The estimation algorithm was then implemented on
each of these sub-sequences, resulting in two separate es-
timates of 0, and oa. Step 2 of the algorithm was imple-
mented by removing the largest 20 spurious signals in the
transform of the sample sequence. Estimates were formed
for input signal frequencies ranging from 100 MHz to 200
MHz (No significant 2wg term was apparent at frequen-
cies below 100 MHz). Input signal amplitudes were set at
95% of the full-scale range of the converter. In all cases
the converter was dithered using Gaussian noise sources
with 100 MHz bandwidth and noise power equal to the
ideal quantization noise power. This gives a theoretical
value for an ideal converter of o, = 1/4/6 = 0.4082 LSBs.
Each estimate was obtained using 16384 samples (8192




0 - Ogsec
- == T = - 9psec
- -=—_ — - 8psec
- - =7 _ — - Tpsec
-0 =Z -2 ~-—"_-~7" _ ~ - 6psec]
S
/:/f’/,/” - 4 psec
=920t — - —go O
I - -0
@) - - — = 3psgc
= ~e-9 98 O0--- e
o O'/ ’/
o -0 -
8—30'Q_,8’e - 2 psec |
—40 _ — - lpsec]
-50 = : : ‘
100 120 140 160 180 200

Test Signal Frequency (MHz)

Figure 3: Measured magnitude of C; for various test fre-
quencies. Dashed lines show the behavior predicted by
the theoretical development for various values of oa.

samples per sub-sequence).

Figure 3 gives a plot of the second harmonic term C,
from step 3 of the algorithm for the various test signal
frequencies. Also shown are the theoretical curves for var-
ious values of oo which are prediced by equation (7). The
plots show fairly consistent results, indicating that the
quadratic behavior of C as a function of w, is being ob-
served.

The actual estimates of o, and o are shown in Fig-
ures 4 and 5. Measured values of o, range consistently
from 0.4 to 0.5 over the entire measurement band. These
results are only slightly worse than those predicted for
an ideal 8-bit converter, indicating a relatively low-noise
converter. Sample time jitter measurements show sample
time standard deviations on the order of 3 to 4 psec over
the entire measurement band.

V. CONCLUSIONS

A straightforward test has been developed which allows for
the measurement of random sample-time jitter in ADCs.
The test is based on driving the converter using a high-
frequency sinusoidal test signal. Simulation and experi-
mental results have shown the test may provide accuracy
on the order of 1 psec.
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Abstract— This paper presents a fast orthogo-
nalization process to train a Radial Basis Function
(RBF) neural network. The traditional methods
for configuring the RBF weights is to use some
matrix inversion or iterative process. These tra-
ditional approaches are either time consuming or
computationally expensive, and often do not con-
verge to a solution. The goal of this paper is first
to use a fast orthogonalization process to find the
nodes of the RBF network which produce the most
improvement on a target function, and then to find
the weights for these nodes. Several applications
of RBF networks using this fast orthogonal search
technique has been conducted and a classification
problem is presented. The problem involves classi-
fication of human chromosomes, which is a highly
complicated 30 dimensional and 24 class problem.
Experimental results will be presented to show
that the fast orthogonal search technique not only
outperforms the traditional technique, but it also
uses much less time and effort.

I. INTRODUCTION

The growth of neural networks has been heavily influ-
enced by the Radial Basis Function (RBF) neural net-
works. The application of the RBF network can be found
in pattern recognition [1, 2], function approximation (3, 4],
signal processing [4, 5], system equalization [6] and more.
The two most important parameters of a RBF node, the
center and the covariance matrix, have been researched
throughly [2, 6]. A major issue handled by these re-
searchers is the reduction of the number of nodes. This
reduction involves clustering of the input samples without
any consideration of the target function, or the conver-
gence of the weights. The weights (the most significant
component of any neural network) of the RBF network
were left untouched by most of the researchers. This over-
sight is not ignorance but a confidence on the traditional
approaches. For RBF weights, the traditional approaches
only work when the training samples are well behaved. In
real life, the training samples are not well behaved causing

major problems on finding the RBF weights. The Issue
of this paper is to find a set of most significant nodes
and their weights for a given network, using a technique
which considers both the structure of the input parameter
space and the target function to which the network will
be trained.

The traditional approach to design an RBF network
is to first select a set of network parameters (number
of nodes, node centers, node covariances) and then find
the weights by formulating the network by solving a least
squares (LS) formulations of the problem. Orthogonal de-
composition techniques may be used to provide an orthog-
onal basis set for a LS problems. An orthogonal scheme
was used by Chen et. al. [7] in RBF networks to simul-
taneously configure the structure of the network and the
weights. The orthogonal search technique presented by
Chen is cumbersome, and requires redundant calculations
making it non-suitable for reasonable size networks.

A similar fast orthogonal search technique has also been
developed by Korenberg et. al. [8, 9] for nonlinear system
identification. This procedure also includes redundant cal-
culations and was highly customized to the problem of
finding the kernels for a nonlinear system with random
inputs. This paper presents an efficient fast orthogonal
search eliminating the redundancy of [7, 8]. The resulting
algorithm is directly applicable to RBF networks and a
wide variety of other LS approximation problems.

1I. RapiaL Basis FUNCTION NEURAL NETWORK

A. RBF structure

The RBF Neural Network gained its popularity for its
simplicity and speed. RBF is a simple feed forward neural
network with only one hidden layer, and an output layer.
The hidden layer consists of a set of neurons or nodes with
radial basis functions as the activation function of the neu-
ron. A Gaussian density function is the most widely used
activation function and assumed throughout this paper.
The output layer is a summing unit, which adds up all of
the weighted output of the hidden layer. Figure 1 illus-
trates the RBF network.




Figure 1: Network structure for the Radial Basis Function
Neural Network.

The output of the RBF network is given by

N
7= @) =) wede(d), (1)
k=1

where
$4(8) = (2m) P [B [ he HEEBT AT (g)

Above, N is the number of network nodes, p is the di-
mensionality of the input space &, and wyg, ¢k, and ¥
represent the weight, center, and the covariance matrix
associated with each node. In the above equation the out-
put of the network is a scalar quantity for simplicity, but
the network can have any number of outputs.

In supervised learning, if (Z,y) is a input output pair,
where & is the input and y is the desired output, then
the network should learn the mapping function f, where
y = f(£). The training is done using the M training
sample pairs (£, y1), (2,¥2),- - (£m,ysm). The output
vector containing the M outputs of the network can be
written using the following matrix form,

¥ = &, (3)

where f]’ is an M dimensional vector, % is the N dimen-
sional weight vector. Each column of the & matrix con-
tains the output of a node for all M training samples.

The problem of finding the network weights reduces to
finding the vector W which makes the network output ¢ as
close as possible to the vector of desired network outputs
7= [y1 ¥2 - -ym)¥. Generally, i is determined by finding
the least square (LS) solution to

dU = 7. (4)

The method for finding the solution to (4) depends in large
part on the structure of the network being designed. One

popular scheme is to center a node of the network on each
of the input training samples (¢; = &,k = 1,2,---, N).
In this case the matrix ® is square, and the weights are
given by @ = &1 provided that & is nonsingular. How-
ever, calculation of $~! is often problematic, particularly
for large networks.

Often, the number of nodes is much less than the num-
ber of training samples. In this case the system of equa-
tions (4) is overdetermined, and no exact solution exists.
Various alternative methods of finding the weights in this
case are discussed in the following section.

B. Soluving for the Weights
B.1. Orthogonal Search

Another technique for solving the least squares problem is
the orthogonal search technique. The orthogonalization of
® can be found by using the Householder transformation
[10], or the Gram-Schimidt orthogonalization procedure
[7, 10, 15].

The weights can be found by substituting the orthog-
onalization of the @ into equation (??), and using the
method of forward substitution, and backward substitu-
tion [10].

This procedure does not work when & is singular, and
it does not give us any insight about the network struc-
ture. A more useful approach is to use the orthogonal
basis vectors to choose a set of nodes which reduces some
error criteria for solving the least squares problem. Chen
[7] presents one such algorithm, derived from the Gram-
Schimidt procedure, to select the most ‘significant’ nodes
one by one. In [8] a similar algorithm was also presented
to select basis function one by one, with emphasis on the
characterization of nonlinear systems with random inputs.
Korenberg et. al. [8] presents an improved, fast version
of orthogonal search technique described in [16].

During each step of Chen’s algorithm [7], the following
procedure is used to search a set of candidate nodes to de-
termine which node will be added to the currently selected
set.

1. For each candidate, find the component of the basis
vector associated with that node which is orthogonal
to all of the currently selected nodes. Either the
Gram-Schimidt or the Householder technique may
be used. Call this component g;.

2. For each candidate, evaluate the projection of the
target vector § onto the unit vector in the direction
of the orthogonal component

Sy
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This component gives the length of the change in
7 which will result if the 5** vector is added to the
currently selected set.

3. Choose the node which gives the largest value of p;
- this is the node which will provide the greatest
reduction in the mean-square error.

The importance of choosing the nodes one by one is sig-
nificant in several aspects. Selection of nodes one by one
provides an insight to the approximation problem, and
the network structure. This insight can be used to further
modify the network. This selection procedure will also let
us meet some physical limitations. Nodes mean connec-
tions, so a reduction of nodes will provide a correspond-
ing reduction of connections which can be very useful for
hardware applications. Finally, this procedure does not
involve the selection of an arbitrary thresholding like the
SVD method which can affect our solution. The desired
number of nodes can be easily chosen just by looking at
the error behavior.

The orthogonal search method is very useful, but not
so practical. The computational complexity of the proce-
dure is not generally practical for networks of reasonable
size. However, the above algorithm may be shown to be
extremely redundant. In section IIlan algorithm will be
presented to implement the orthogonal search technique
efficiently. The algorithm will perform the same orthog-
onalization procedure without explicitly calculating the
orthogonal set.

III. THE FAsT ORTHOGONAL SEARCH

In this section a simple, fast algorithm will be developed
to find a set of weights that are best for the given network.
The technique will suggest the number of nodes needed by
the network elliminating redundant nodes. The procedure
may be shown to be a computationally efficient procedure
for implementing the orthogonal search technique of sec-
tion B.l. Similar fast orthogonal search techniques have
been used by Korenberg [8, 9] for time-series analysis, sys-
tem identification, and signal identification problems.

A. The Fast Orthogonal Search Algorithm

The problem of solving for the RBF weights from the
equation (3) is the issue of this section. Like the or-
thogonal search technique, during each iteration of the
algorithm a set of candidate nodes will be considered to
identify which node will provide the best improvement to
the approximation of 4. This node will be added to the
network, and the procedure continues until either an er-
ror criterion is met or the number of nodes in the network
reaches a desired value. Unlike the orthogonal search tech-
nique, the orthogonal basis set associated with the selected

set of nodes is never explicitly calculated, significantly re-
ducing the computational burden of the procedure.

The following algorithm presents the appropriate steps
to implement the technique.

1. Store all the node outputs in the set {5,} and
initialize the following variables:
Q= &?:‘71
512 = (}—S?¢i,
z; = [0x1 wector],
U = [0x0 matriz], (6)
here, 7 =1,2,---, N. Also set

Error =47y,

Number_node_selected = 0.

2. The iteration begins here.
Find the maximum value of o /52 for all i. Let’s
say the maximum is at ¢ = k.

3. Set,
&= [ v ] @
4. Update the &; as in equation (?7?), by finding £;
first,
b= £ (FLd - ) ®)
giving,

5. Update ¢; as in equation (77),

& =6 - (10)

6. Finally update a as in equation (??) by,

- arf;

o = oy — {k .

(11)
In the above, from step 4 to step 6 updating is only
required when ¢ # k.

7. Keep repeating from step 4 through step 6 until all
the nodes in the set {qSJ} have been updated.

8. Delete the ki* node from the set {§;}.




9. Increment the Number_node_selected by one, and
set Error = Error — a3 /€2. If Error is less than
some error threshold, or the Number_node_selected
is equal to the desired number of nodes then go to
step 10, otherwise go through the steps 2 - 8 again.

10. At this stage we have a U matrix giving the
Cholesky decomposition of &

¢Te =UTU. (12)
Note that here ® does not contain the response from
all nodes as in section ??, ® is formed only from the
set of nodes that reduce the sum squared error of
y. We can use the equation above in the normal
equation (?7?), and then solve for the weights of the

selected nodes by the method of forward substitu-
tion, and backward substitution.

The algorithm presented in this section not only imple-
ments the technique to find the weights of a given net-
work, but also allows the user to select the number of
nodes. This selection has physical significance since there
may exist hardware or software limitations on implement-
ing nodes. The algorithm finds the best fixed number of
nodes rather than just an arbitrary choice of nodes. If
the number of nodes is not an issue than one may be able
to find a better network by choosing a sum square error
threshold. Also we can look at how the error is behaving
as the nodes have been added to the network. This pro-
vides an indication of whether addition of a node really
makes a difference or not.

IV. A PATTERN RECOGNITION APPLICATION

The application of RBF neural network is widespread.
RBF networks have been successfully applied in pattern
recognition [1, 2], function approximation [4], time series
prediction [4], signal detection [5, 17] and many other im-
portant problems.

A complicated and challenging application of RBF will
be discussed in this section. “Karyotyping”, the classifi-
cation of the chromosome in a metaphase into the 24 nor-
mal classes has been a very important issue in the medical
field for many many years. The automation of karyotyp-
ing by computers has been in development for about 25
years [21]. Classification of chromosomes involves finding
a good set of features to describe a chromosome, and a
classification technique to identify the chromosomes using
the features. The RBF neural network developed in this
report will be used for the classification of chromosome
given a set of features.

Only p nodes are

7 ? connected from the hidden
layer to the output layer

~x > X l

 gur
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Figure 2: Network structure for the RBF Network for
Chromosome Classification.

A. RBF Network for Chromosome Classification

The problem of karyotyping involves classifying the chro-
mosome of 30 features (for the data base used here) into
24 different classes. The chromosomes in a cell consists of
22 pairs of autosomes, one of each pair inherited of each
parent, and two sex chromosomes (an X and Y for male,
and two X'’s for female). Classification of a cell correctly
requires classification of all 24 classes of a cell. Rather
than classifying a cell, this report will look at the classi-
fication per class. So here the problem is to only classify
each pair of autosomes, and the sex chromosomes.

The RBF structure for the Chromosome classification is
slightly different than the one given in Figure 1 of section
II. The output layer of the network consists of 24 out-
put nodes to provide a probability measure for each of the
24 classes. The decision of the network is the node that
gives the highest output. One major advantage of the fast
orthogonal search technique will be evident here. Figure
2 illustrates the RBF network for chromosome classifica-
tion. For the standard RBF networks, all the nodes of the
hidden layer are connected to all the nodes of the output
layer. The fast orthogonal search will be able to reduce
the insignificant connections. The reduction of the nodes
can be of very large scale for a multiclass problem like
the chromosome classification. The following result and
analysis section will show this phenomenon.

B. Results and Analysis

The Chromosome database used for evaluating the
method is the Copenhagen database [20, 21, 22]. Each




pattern of this database is an autosome, the X sex chromo-
some, or the Y sex chromosome. Each pattern consists of
a set of 30 different features, which are the measurements
of the normalized area, size, density, normalized convex
hull perimeter, normalized length, area, centromeric in-
dex, mass centromeric index, length centromeric index,
the weighted density distribution density, and others [20].

The RBF neural network was trained with 1000 training
patterns. The initial nodes of the network were placed
on first 500 of these 1000 patterns. The covariance of
each node was chosen to be diagonal with initial diagonal
elements equal to the estimated variance of the class the
node belongs to, that is

ol = E{(zjr — cax)?} (13)

Where o7, denotes the k** diagonal element of the covari-
ance matrix ¥; for the i** node, and c;;, is the k** compo-
nent of the i** node center, and z;x is the k** feature of
the pattern ;. The diagonal elements of the covariance
matrix were adjusted to separate the closest discriminat-
ing nodes. The adjustment was made by multiplying the
diagonal element of the covariance matrix by a fraction of
the distance between two overlapping classes, that is

B = v5i(8 &) 57N (g —&),

3;,¢ € {class l}.

¢, ¢ ¢ {classl}. (14)

Where v is a constant less than 1.0. The fast orthogonal
search was used to only find the best 40 nodes per class
and their weights. The search technique successfully found
the desired nodes. Figure 3 shows the training error for
class 1 as each node was added in.

Notice here that only 40 out of 500 RBF nodes are con-
nected to each output node. By looking at figure 3, we
see that the training error for class 1 has leveled off by the
introduction of the 40** node, implying that introducing
another node may not improve the performance at all.
Similar conclusion can be made for training other classes.

After training the network, the network was tested by
a test set of 3000 patterns different from the training set.
The percent error for this test set was 3.84%, which was
slightly lower than the ones presented by [20, 21, 22].

The number of initial nodes from which to select a set
of nodes of the network can influence the performance.
Figure 4 illustrates the results of some simple tests where
the number of initial node assignment was changed for the
training procedure described above. The plots in figure 4
gives the percent error (y-axis) for a network constructed
by selecting a set of nodes per class from a larger set of
initial nodes (x-axis). The test was performed to select
10, 20, 30, 40, 50 and 60 nodes per class from the initial
sets. The percentage error was generally lower than the
error given by [21, 22]. From Figure 4 we can also see
that the percent error for 10 selected nodes per class is

sum square €rror
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Figure 3: The sum squared error for training class 1 of
the Chromosome problem.

higher than all other selections. This suggests that 10
nodes per class is not necessarily the best. On the other
hand, selection of 60 nodes does not improve the percent
error at all suggesting overtraining. The smaller initial
set of (100-300) nodes are good, but not the best (too
little to choose from) and the percent error increases as
the initial nodes increases (too many to choose fro). One
other important issue is that even though the percent error
is changing due to the selection process, the difference
between the best performance and the worst performance
of all the test is merely 1.82%, suggesting that the fast
orthogonal search procedure is finding the best possible
selection for a given network.

V. CONCLUSION

This paper presented an approach to configure the most
significant component of the RBF neural networks, the
weights.

The method provides a simple way to find the most
significant nodes of the network and their weights. The
technique of fast orthogonal search is implementable us-
ing a simple 10 step algorithm. Traditional approaches
require significantly more computations. The technique
provides a solution regardless of the network parameters.
The provided solution is the best to match the target func-
tion. The traditional approaches may not converge, or
may produce an erroneous solution. The solution is corre-
lated with the target function, so scaling of any node will
not affect the network output. This is in contrast to many
of the traditional approaches, where node activation func-
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Figure 4: The percent error for the network for different
number of the initial node selection

tions must be carefully normalized. The approach gives a
clear indication of the number of nodes to be used. Nodes
should be added only until addition of a node does not
improve the output significantly. Several important ap-
plications of the RBF network have been tried out and
two applications are provided in this paper. The result
shows that the orthogonal search technique gives better
performance than that of the other approaches.

The fast orthogonal search technique is a significant im-
provement over existing RBF training techniques. The
method provides good insight into the concerned prob-
lem, and the size of the network required to address the
problem.
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